AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High photoluminescence Ag-In-Ga-S quantum dots based on ZnX2-treated surface passivation

Danni YanYuhui Dong( )Naiwei WeiShuai YangHong ZhuWanzhong GuYousheng Zou( )Haibo Zeng( )
MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Show Author Information

Graphical Abstract

In this work, we developed a new method to enhance the photoluminescence quantum yield (PLQY) of Ag-In-Ga-S (AIGS) quantum dots (QDs) by introducing a ZnX2 ligand during purification. The introduction of ZnCl2 led to a 3-fold increase in PLQY by passivating non-coordinated atoms and establishing new bonds between sulfur-dangling bonds and Zn2+. This will further promote the application of quaternary AIGS QDs in luminescent displays.

Abstract

Quaternary Ag-In-Ga-S (AIGS) quantum dot (QD) is considered a promising, spectral-tunable, and environmentally friendly luminescent display material. However, the more complex surface defect states of AIGS QDs resulting from the coexistence of multiple elements lead to a low (< 60%) photoluminescence quantum yield (PLQY). Here, we develop a novel convenient method to introduce Z-type ligands ZnX2 (X = Cl, Br, I) for passivating the surface defects of AIGS QDs to dramatically enhance the PLQY and stability without affecting the crystalline structure and morphology. Results show that the addition of ZnCl2 during the purified process of AIGS QDs leads to a 3-fold increase of PLQY (from 28.5% to 87%). Impressively, the highest PLQY is up to a recorded value of 92%, which is comparable to typical heavy metal QDs. Exciton dynamics studies have shown that the rapid annihilation process of excitons in treated QDs is inhibited. We also confirm that the improvement in PLQY is a result of the effective passivation of the non-coordinating atom on the QD surface by building a new bonding between sulfur dangling and Zn2+. The realization of high PLQY will further promote the application of AIGS QDs in luminescent displays.

Electronic Supplementary Material

Download File(s)
6724_ESM.pdf (3.9 MB)

References

[1]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[2]

Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.

[3]

Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

[4]

Liu, X. K.; Xu, W. D.; Bai, S.; Jin, Y. Z.; Wang, J. P.; Friend, R. H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21.

[5]

Chen, B. K.; Pradhan, N.; Zhong, H. Z. From large-scale synthesis to lighting device applications of ternary I-III-VI semiconductor nanocrystals: Inspiring greener material emitters. J. Phys. Chem. Lett. 2018, 9, 435–445.

[6]

Torimoto, T.; Kameyama, T.; Uematsu, T.; Kuwabata, S. Controlling optical properties and electronic energy structure of I-III-VI semiconductor quantum dots for improving their photofunctions. J. Photochem. Photobiol. C 2023, 54, 100569.

[7]

Yang, L. X.; Zhang, S.; Xu, B.; Jiang, J. Y.; Cai, B.; Lv, X. Y.; Zou, Y. S.; Fan, Z. Y.; Yang, H.; Zeng, H. B. I-III-VI quantum dots and derivatives: Design, synthesis, and properties for light-emitting diodes. Nano Lett. 2023, 23, 2443–2453.

[8]

Moodelly, D.; Kowalik, P.; Bujak, P.; Pron, A.; Reiss, P. Synthesis, photophysical properties and surface chemistry of chalcopyrite-type semiconductor nanocrystals. J. Mater. Chem. C 2019, 7, 11665–11709.

[9]

Jo, D. Y.; Kim, D.; Kim, J. H.; Chae, H.; Seo, H. J.; Do, Y. R.; Yang, H. Tunable white fluorescent copper gallium sulfide quantum dots enabled by Mn doping. ACS Appl. Mater. Interfaces 2016, 8, 12291–12297.

[10]

Kim, J. H.; Yang, H. High-efficiency Cu-In-S quantum-dot-light-emitting device exceeding 7%. Chem. Mater. 2016, 28, 6329–6335.

[11]

Motomura, G.; Ogura, K.; Iwasaki, Y.; Uematsu, T.; Kuwabata, S.; Kameyama, T.; Torimoto, T.; Tsuzuki, T. Electroluminescence from band-edge-emitting AgInS2/GaS x core/shell quantum dots. Appl. Phys. Lett. 2020, 117, 091101.

[12]

Motomura, G.; Ogura, K.; Kameyama, T.; Torimoto, T.; Uematsu, T.; Kuwabata, S.; Tsuzuki, T. Efficient quantum-dot light-emitting diodes using ZnS-AgInS2 solid-solution quantum dots in combination with organic charge-transport materials. Appl. Phys. Lett. 2020, 116, 093302.

[13]

Kim, J. H.; Kim, B. Y.; Jang, E. P.; Yoon, S. Y.; Kim, K. H.; Do, Y. R.; Yang, H. Synthesis of widely emission-tunable Ag-Ga-S and its quaternary derivative quantum dots. Chem. Eng. J. 2018, 347, 791–797.

[14]

Uematsu, T.; Doi, T.; Torimoto, T.; Kuwabata, S. Preparation of luminescent AgInS2-AgGaS2 solid solution nanoparticles and their optical properties. J. Phys. Chem. Lett. 2010, 1, 3283–3287.

[15]

Li, F.; Wei, J. H.; Liao, G. Q.; Guo, C. Y.; Huang, Y.; Zhang, Q.; Jin, X.; Jiang, S. Q.; Tang, Q. W.; Li, Q. H. Quaternary quantum dots with gradient valence band for all-inorganic perovskite solar cells. J. Colloid Interface Sci. 2019, 549, 33–41.

[16]

Huang, G. X.; Huang, Y.; Liu, Z. L.; Wei, J. H.; Zhu, Q. S.; Jiang, G. Y.; Jin, X.; Li, Q. H.; Li, F. White light-emitting diodes based on quaternary Ag-In-Ga-S quantum dots and their influences on melatonin suppression index. J. Lumin. 2021, 233, 117903.

[17]

Kameyama, T.; Kishi, M.; Miyamae, C.; Sharma, D. K.; Hirata, S.; Yamamoto, T.; Uematsu, T.; Vacha, M.; Kuwabata, S.; Torimoto, T. Wavelength-tunable band-edge photoluminescence of nonstoichiometric Ag-In-S nanoparticles via Ga3+ doping. ACS Appl. Mater. Interfaces 2018, 10, 42844–42855.

[18]

Hoisang, W.; Uematsu, T.; Torimoto, T.; Kuwabata, S. Surface ligand chemistry on quaternary Ag(In x Ga1− x )S2 semiconductor quantum dots for improving photoluminescence properties. Nanoscale Adv. 2022, 4, 849–857.

[19]

Hu, Z.; Lu, H. X.; Zhou, W. J.; Wei, J. X.; Dai, H. Q.; Liu, H.; Xiong, Z. Y.; Xie, F. X.; Zhang, W. L.; Guo, R. Q. Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes. J. Mater. Sci. Technol. 2023, 134, 189–196.

[20]

Pan, L. J.; Tu, J. W.; Yang, L. L.; Tian, Z. Q.; Zhang, Z. L. Photoluminescence enhancement of NIR-II emissive Ag2S quantum dots via chloride-mediated growth and passivation. Adv. Opt. Mater. 2022, 10, 2102806.

[21]

Hoisang, W.; Uematsu, T.; Torimoto, T.; Kuwabata, S. Luminescent quaternary Ag(In x Ga1− x )S2/GaS y core/shell quantum dots prepared using dithiocarbamate compounds and photoluminescence recovery via post treatment. Inorg. Chem. 2021, 60, 13101–13109.

[22]

Rismaningsih, N.; Yamauchi, H.; Kameyama, T.; Yamamoto, T.; Morita, S.; Yukawa, H.; Uematsu, T.; Baba, Y.; Kuwabata, S.; Torimoto, T. Photoluminescence properties of quinary Ag-(In, Ga)-(S, Se) quantum dots with a gradient alloy structure for in vivo bioimaging. J. Mater. Chem. C 2021, 9, 12791–12801.

[23]

Torimoto, T.; Ogawa, S.; Adachi, T.; Kameyama, T.; Okazaki, K. I.; Shibayama, T.; Kudo, A.; Kuwabata, S. Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment. Chem. Commun. 2010, 46, 2082–2084.

[24]

Kameyama, T.; Takahashi, T.; Machida, T.; Kamiya, Y.; Yamamoto, T.; Kuwabata, S.; Torimoto, T. Controlling the electronic energy structure of ZnS-AgInS2 solid solution nanocrystals for photoluminescence and photocatalytic hydrogen evolution. J. Phys. Chem. C 2015, 119, 24740–24749.

[25]

Ko, M.; Yoon, H. C.; Yoo, H.; Oh, J. H.; Yang, H.; Do, Y. R. Highly efficient green Zn-Ag-In-S/Zn-In-S/ZnS QDs by a strong exothermic reaction for down-converted green and tripackage white LEDs. Adv. Funct. Mater. 2017, 27, 1602638.

[26]

Kirkwood, N.; Monchen, J. O. V.; Crisp, R. W.; Grimaldi, G.; Bergstein, H. A. C.; Du Fossé, I.; Van Der Stam, W.; Infante, I.; Houtepen, A. J. Finding and fixing traps in II-VI and III-V colloidal quantum dots: The importance of Z-type ligand passivation. J. Am. Chem. Soc. 2018, 140, 15712–15723.

[27]

Bai, Y.; Hao, M. M.; Ding, S. S.; Chen, P.; Wang, L. Z. Surface chemistry engineering of perovskite quantum dots: Strategies, applications, and perspectives. Adv. Mater. 2022, 34, 2105958.

[28]

Wang, R. L.; Shang, Y. Q.; Kanjanaboos, P.; Zhou, W. J.; Ning, Z. J.; Sargent, E. H. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 2016, 9, 1130–1143.

[29]

Owen, J. The coordination chemistry of nanocrystal surfaces. Science 2015, 347, 615–616.

[30]

Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the origin of surface traps in colloidal II-VI semiconductor nanocrystals. Chem. Mater. 2017, 29, 752–761.

[31]

Xie, M. Y.; Guo, J.; Zhang, X. Y.; Bi, C. H.; Sun, X. J.; Li, H. R.; Zhang, L.; Binks, D.; Li, G.; Zheng, W. T. et al. Suppressing ion migration of mixed-halide perovskite quantum dots for high efficiency pure-red light-emitting diodes. Adv. Funct. Mater. 2023, 33, 2300116.

[32]

Jang, J. S.; Borse, P. H.; Lee, J. S.; Choi, S. H.; Kim, H. G. Indium induced band gap tailoring in AgGa1− x In x S2 chalcopyrite structure for visible light photocatalysis. J. Chem. Phys. 2008, 128, 154717.

[33]

Song, J. Z.; Fang, T.; Li, J. H.; Xu, L. M.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 2018, 30, 1805409.

[34]

Li, J. H.; Chen, J. W.; Xu, L. M.; Liu, S. N.; Lan, S.; Li, X. S.; Song, J. Z. A zinc non-halide dopant strategy enables efficient perovskite CsPbI3 quantum dot-based light-emitting diodes. Mater. Chem. Front. 2020, 4, 1444–1453.

[35]

Kandi, D.; Mansingh, S.; Behera, A.; Parida, K. Calculation of relative fluorescence quantum yield and Urbach energy of colloidal CdS QDs in various easily accessible solvents. J. Lumin. 2021, 231, 117792.

[36]

Torimoto, T.; Kamiya, Y.; Kameyama, T.; Nishi, H.; Uematsu, T.; Kuwabata, S.; Shibayama, T. Controlling shape anisotropy of ZnS-AgInS2 solid solution nanoparticles for improving photocatalytic activity. ACS Appl. Mater. Interfaces 2016, 8, 27151–27161.

[37]

Xiang, W. D.; Xie, C. P.; Wang, J.; Zhong, J. S.; Liang, X. J.; Yang, H. L.; Luo, L.; Chen, Z. P. Studies on highly luminescent AgInS2 and Ag-Zn-In-S quantum dots. J. Alloys Compd. 2014, 588, 114–121.

[38]

Liu, M. L.; Jiang, N. Z.; Huang, H.; Lin, J. D.; Huang, F.; Zheng, Y. P.; Chen, D. Q. Ni2+-doped CsPbI3 perovskite nanocrystals with near-unity photoluminescence quantum yield and superior structure stability for red light-emitting devices. Chem. Eng. J. 2021, 413, 127547.

[39]

Yin, W. X.; Li, M. K.; Dong, W.; Luo, Z.; Li, Y. X.; Qian, J. Y.; Zhang, J. Q.; Zhang, W.; Zhang, Y.; Kershaw, S. V. et al. Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets. ACS Energy Lett. 2021, 6, 477–484.

[40]

Wu, Y.; Wei, C. T.; Li, X. M.; Li, Y. L.; Qiu, S. C.; Shen, W.; Cai, B.; Sun, Z. G.; Yang, D. D.; Deng, Z. T. et al. In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett. 2018, 3, 2030–2037.

[41]

Zhu, H. W.; Tong, G. Q.; Li, J. C.; Xu, E. Z.; Tao, X. Y.; Sheng, Y. Y.; Tang, J. X.; Jiang, Y. Enriched-bromine surface state for stable sky-blue spectrum perovskite QLEDs with an EQE of 14.6%. Adv. Mater. 2022, 34, 2205092.

[42]

Shang, Y. Q.; Ning, Z. J. Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. Natl. Sci. Rev. 2017, 4, 170–183.

[43]

Uematsu, T.; Wajima, K.; Sharma, D. K.; Hirata, S.; Yamamoto, T.; Kameyama, T.; Vacha, M.; Torimoto, T.; Kuwabata, S. Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III-VI semiconductor shells. NPG Asia Mater. 2018, 10, 713–726.

[44]

Gabka, G.; Bujak, P.; Kotwica, K.; Ostrowski, A.; Lisowski, W.; Sobczak, J. W.; Pron, A. Luminophores of tunable colors from ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals covering the visible to near-infrared spectral range. Phys. Chem. Chem. Phys. 2017, 19, 1217–1228.

[45]

Elidrissi, B.; Addou, M.; Regragui, M.; Bougrine, A.; Kachouane, A.; Bernède, J. C. Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis. Mater. Chem. Phys. 2001, 68, 175–179.

[46]

Li, X. Y.; Li, X.; Zhu, B. Y.; Wang, J. S.; Lan, H. X.; Chen, X. B. Synthesis of porous ZnS, ZnO and ZnS/ZnO nanosheets and their photocatalytic properties. RSC Adv. 2017, 7, 30956–30962.

[47]

Turo, M. J.; Macdonald, J. E. Crystal-bound vs surface-bound thiols on nanocrystals. ACS Nano 2014, 8, 10205–10213.

[48]

Zhang, L. Y.; Wang, H.; Qin, N.; Zheng, J. S.; Zhao, J. G. A high-rate and ultrastable anode for lithium ion capacitors produced by modifying hard carbon with both surface oxidation and intercalation. New Carbon Mater. 2022, 37, 1000–1010.

Nano Research
Pages 7533-7541
Cite this article:
Yan D, Dong Y, Wei N, et al. High photoluminescence Ag-In-Ga-S quantum dots based on ZnX2-treated surface passivation. Nano Research, 2024, 17(8): 7533-7541. https://doi.org/10.1007/s12274-024-6724-0
Topics:

863

Views

2

Crossref

0

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 04 February 2024
Revised: 12 April 2024
Accepted: 28 April 2024
Published: 15 June 2024
© Tsinghua University Press 2024
Return