Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Laser levitated in the air may open new application scenarios, such as quantum information processing, three-dimensional display, and ultra-sensitive gas sensing et al. However, the solid-state levitated laser is yet to be demonstrated. Here, we develop a nebulization method to fabricate colloidal quantum dots self-assembled microspheres, which can be levitated by photophoresis provided by continuous wave lasers and photoexcited by pulsed lasers. These levitated microspheres can serve as high-quality gain media and whispering gallery mode cavities simultaneously, allowing us to demonstrate the levitated solid-state laser for the first time.
Tebbenjohanns, F.; Mattana, M. L.; Rossi, M.; Frimmer, M.; Novotny, L. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature 2021, 595, 378–382.
Delić, U.; Reisenbauer, M.; Dare, K.; Grass, D.; Vuletić, V.; Kiesel, N.; Aspelmeyer, M. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 2020, 367, 892–895.
Smalley, D. E.; Nygaard, E.; Squire, K.; Van Wagoner, J.; Rasmussen, J.; Gneiting, S.; Qaderi, K.; Goodsell, J.; Rogers, W.; Lindsey, M. et al. A photophoretic-trap volumetric display. Nature 2018, 553, 486–490.
Hirayama, R.; Plasencia, D. M.; Masuda, N.; Subramanian, S. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature 2019, 575, 320–323.
Tang, S. J.; Zhang, M. J.; Sun, J.; Meng, J. W.; Xiong, X.; Gong, Q. H.; Jin, D. Y.; Yang, Q. F.; Xiao, Y. F. Single-particle photoacoustic vibrational spectroscopy using optical microresonators. Nat. Photon. 2023, 17, 951–956.
Tan, T.; Yuan, Z. Y.; Zhang, H.; Yan, G. F.; Zhou, S. Y.; An, N.; Peng, B.; Soavi, G.; Rao, Y. J.; Yao, B. C. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 2021, 12, 6716.
Schäfer, J.; Mondia, J. P.; Sharma, R.; Lu, Z. H.; Susha, A. S.; Rogach, A. L.; Wang, L. J. Quantum dot microdrop laser. Nano Lett. 2008, 8, 1709–1712.
Azzouz, H.; Alkhafadiji, L.; Balslev, S.; Johansson, J.; Mortensen, N. A.; Nilsson, S.; Kristensen, A. Levitated droplet dye laser. Opt. Express 2006, 14, 4374–4379.
Horvath, H. Photophoresis—A forgotten force? KONA Powder Part. J. 2014, 31, 181–199.
Shvedov, V. G.; Rode, A. V.; Izdebskaya, Y. V.; Desyatnikov, A. S.; Krolikowski, W.; Kivshar, Y. S. Giant optical manipulation. Phys. Rev. Lett. 2010, 105, 118103.
Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.
Chen, W. G.; Wang, L.; Liu, R. X.; Shen, H. B.; Du, J. F.; Fan, F. J. Self-assembled and wavelength-tunable quantum dot whispering-gallery-mode lasers for backlight displays. Nano Lett. 2023, 23, 437–443
I.; Janke, E. M.; Portner, J.; Haubold, D.; Nguyen, T. D.; Das, A.; Tanner, C. P. N.; Utterback, J. K.; Teitelbaum, S. W.; Hudson, M. H. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 2022, 375, 1422–1426
Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.
Chang, H.; Zhong, Y. C.; Dong, H. X.; Wang, Z. Y.; Xie, W.; Pan, A. L.; Zhang, L. Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K. Light Sci. Appl. 2021, 10, 60.
Montanarella, F.; Urbonas, D.; Chadwick, L.; Moerman, P. G.; Baesjou, P. J.; Mahrt, R. F.; Van Blaaderen, A.; Stöferle, T.; Vanmaekelbergh, D. Lasing supraparticles self-assembled from nanocrystals. ACS Nano 2018, 12, 12788–12794.
Qian, S. X.; Snow, J. B.; Tzeng, H. M.; Chang, R. K. Lasing droplets: Highlighting the liquid-air interface by laser emission. Science 1986, 231, 486–488.
Du, Y. X.; Zou, C. L.; Zhang, C. H.; Wang, K.; Qiao, C.; Yao, J. N.; Zhao, Y. S. Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light Sci. Appl. 2020, 9, 151.
Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of multiparticle auger rates in semiconductor quantum dots. Science 2000, 287, 1011–1013.
Park, Y. S.; Bae, W. K.; Baker, T.; Lim, J.; Klimov, V. I. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 2015, 15, 7319–7328.
Jung, H.; Ahn, N.; Klimov, V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photon. 2021, 15, 643–655.
Shvedov, V. G.; Desyatnikov, A. S.; Rode, A. V.; Krolikowski, W.; Kivshar, Y. S. Optical guiding of absorbing nanoclusters in air. Opt. Express 2009, 17, 5743.
Shvedov, V. G.; Hnatovsky, C.; Rode, A. V.; Krolikowski, W. Robust trapping and manipulation of airborne particles with a bottle beam. Opt. Express 2011, 19, 17350–17356.
Wang, C.; Pan, Y. L.; Videen, G. Optical trapping and laser-spectroscopy measurements of single particles in air: A review. Meas. Sci. Technol. 2021, 32, 102005.
Liu, F. R.; Zhang, Z. G.; Wei, Y. F.; Zhang, Q. C.; Cheng, T.; Wu, X. P. Photophoretic trapping of multiple particles in tapered-ring optical field. Opt. Express 2014, 22, 23716–23723.