AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quantum dot microsphere laser levitated in the air

Guihai Li1,2Ruixiang Liu1,2Lei Wang3Jianshun Li3Jingchun Li3Xiaoting Yang3Huaibin Shen3Fengjia Fan1,2( )
CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
Show Author Information

Graphical Abstract

Microspheres composed of self-assembled colloidal quantum dots are optically levitated in the air, exhibiting whispering gallery mode lasing under the photoexcitation of a femtosecond pulse laser.

Abstract

Laser levitated in the air may open new application scenarios, such as quantum information processing, three-dimensional display, and ultra-sensitive gas sensing et al. However, the solid-state levitated laser is yet to be demonstrated. Here, we develop a nebulization method to fabricate colloidal quantum dots self-assembled microspheres, which can be levitated by photophoresis provided by continuous wave lasers and photoexcited by pulsed lasers. These levitated microspheres can serve as high-quality gain media and whispering gallery mode cavities simultaneously, allowing us to demonstrate the levitated solid-state laser for the first time.

Electronic Supplementary Material

Download File(s)
6727_ESM.pdf (933.2 KB)

References

[1]

Tebbenjohanns, F.; Mattana, M. L.; Rossi, M.; Frimmer, M.; Novotny, L. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature 2021, 595, 378–382.

[2]

Delić, U.; Reisenbauer, M.; Dare, K.; Grass, D.; Vuletić, V.; Kiesel, N.; Aspelmeyer, M. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 2020, 367, 892–895.

[3]

Smalley, D. E.; Nygaard, E.; Squire, K.; Van Wagoner, J.; Rasmussen, J.; Gneiting, S.; Qaderi, K.; Goodsell, J.; Rogers, W.; Lindsey, M. et al. A photophoretic-trap volumetric display. Nature 2018, 553, 486–490.

[4]

Hirayama, R.; Plasencia, D. M.; Masuda, N.; Subramanian, S. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature 2019, 575, 320–323.

[5]

Tang, S. J.; Zhang, M. J.; Sun, J.; Meng, J. W.; Xiong, X.; Gong, Q. H.; Jin, D. Y.; Yang, Q. F.; Xiao, Y. F. Single-particle photoacoustic vibrational spectroscopy using optical microresonators. Nat. Photon. 2023, 17, 951–956.

[6]

Tan, T.; Yuan, Z. Y.; Zhang, H.; Yan, G. F.; Zhou, S. Y.; An, N.; Peng, B.; Soavi, G.; Rao, Y. J.; Yao, B. C. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 2021, 12, 6716.

[7]

Schäfer, J.; Mondia, J. P.; Sharma, R.; Lu, Z. H.; Susha, A. S.; Rogach, A. L.; Wang, L. J. Quantum dot microdrop laser. Nano Lett. 2008, 8, 1709–1712.

[8]

Azzouz, H.; Alkhafadiji, L.; Balslev, S.; Johansson, J.; Mortensen, N. A.; Nilsson, S.; Kristensen, A. Levitated droplet dye laser. Opt. Express 2006, 14, 4374–4379.

[9]

Horvath, H. Photophoresis—A forgotten force? KONA Powder Part. J. 2014, 31, 181–199.

[10]

Shvedov, V. G.; Rode, A. V.; Izdebskaya, Y. V.; Desyatnikov, A. S.; Krolikowski, W.; Kivshar, Y. S. Giant optical manipulation. Phys. Rev. Lett. 2010, 105, 118103.

[11]

Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

[12]

Chen, W. G.; Wang, L.; Liu, R. X.; Shen, H. B.; Du, J. F.; Fan, F. J. Self-assembled and wavelength-tunable quantum dot whispering-gallery-mode lasers for backlight displays. Nano Lett. 2023, 23, 437–443

[13]

I.; Janke, E. M.; Portner, J.; Haubold, D.; Nguyen, T. D.; Das, A.; Tanner, C. P. N.; Utterback, J. K.; Teitelbaum, S. W.; Hudson, M. H. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 2022, 375, 1422–1426

[14]

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

[15]

Chang, H.; Zhong, Y. C.; Dong, H. X.; Wang, Z. Y.; Xie, W.; Pan, A. L.; Zhang, L. Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K. Light Sci. Appl. 2021, 10, 60.

[16]

Montanarella, F.; Urbonas, D.; Chadwick, L.; Moerman, P. G.; Baesjou, P. J.; Mahrt, R. F.; Van Blaaderen, A.; Stöferle, T.; Vanmaekelbergh, D. Lasing supraparticles self-assembled from nanocrystals. ACS Nano 2018, 12, 12788–12794.

[17]

Qian, S. X.; Snow, J. B.; Tzeng, H. M.; Chang, R. K. Lasing droplets: Highlighting the liquid-air interface by laser emission. Science 1986, 231, 486–488.

[18]

Du, Y. X.; Zou, C. L.; Zhang, C. H.; Wang, K.; Qiao, C.; Yao, J. N.; Zhao, Y. S. Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light Sci. Appl. 2020, 9, 151.

[19]

Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of multiparticle auger rates in semiconductor quantum dots. Science 2000, 287, 1011–1013.

[20]

Park, Y. S.; Bae, W. K.; Baker, T.; Lim, J.; Klimov, V. I. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 2015, 15, 7319–7328.

[21]

Jung, H.; Ahn, N.; Klimov, V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photon. 2021, 15, 643–655.

[22]

Shvedov, V. G.; Desyatnikov, A. S.; Rode, A. V.; Krolikowski, W.; Kivshar, Y. S. Optical guiding of absorbing nanoclusters in air. Opt. Express 2009, 17, 5743.

[23]

Shvedov, V. G.; Hnatovsky, C.; Rode, A. V.; Krolikowski, W. Robust trapping and manipulation of airborne particles with a bottle beam. Opt. Express 2011, 19, 17350–17356.

[24]

Wang, C.; Pan, Y. L.; Videen, G. Optical trapping and laser-spectroscopy measurements of single particles in air: A review. Meas. Sci. Technol. 2021, 32, 102005.

[25]

Liu, F. R.; Zhang, Z. G.; Wei, Y. F.; Zhang, Q. C.; Cheng, T.; Wu, X. P. Photophoretic trapping of multiple particles in tapered-ring optical field. Opt. Express 2014, 22, 23716–23723.

Nano Research
Pages 10525-10528
Cite this article:
Li G, Liu R, Wang L, et al. Quantum dot microsphere laser levitated in the air. Nano Research, 2024, 17(12): 10525-10528. https://doi.org/10.1007/s12274-024-6727-x
Topics:

451

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 10 March 2024
Revised: 22 April 2024
Accepted: 28 April 2024
Published: 14 June 2024
© Tsinghua University Press 2024
Return