AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultraclean transfer of graphene by mechanically exfoliating polymer with modified crosslink density

Qi Lu1,2,3,4,§Jiawei Yang4,5,§Chaofan Zhou2,§Zhaoning Hu2,§Saiyu Bu2Bingbing Guo4Yixuan Zhao3,4Junhao Liao4,6Mingpeng Shang4,6Ge Chen4Kaicheng Jia4Jianbo Yin7Qiang Zeng8( )Li Lin2( )Zhongfan Liu1,3,4( )
College of Science, China University of Petroleum (Beijing), Beijing 102249, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing Graphene Institute, Beijing 100095, China
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
Department of Electronics, Peking University, Beijing 100871, China
Second Clinical Division, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China

§ Qi Lu, Jiawei Yang, Chaofan Zhou, and Zhaoning Hu contributed equally to this work.

Show Author Information

Graphical Abstract

Herein, through the thermal imidization of polyamide acid (PAA) to polyimide (PI) and tuning of the concentration of dangling chains, we achieved the ultraclean and crack-free transfer of graphene wafers with high electronic quality.

Abstract

The transfer of graphene from metallic substrates onto application-specific substrates is usually inevitable for the applications of high-quality graphene films derived from chemical vapour deposition (CVD) approaches. Commonly used to support the graphene films during the transfer, the coating of the polymer would produce the surface contaminations and hinder the industrially compatible transfer. In this work, through the thermal imidization of polyamide acid (PAA) to polyimide (PI) and tuning of the concentration of dangling chains, we achieved the ultraclean and crack-free transfer of graphene wafers with high electronic quality. The resulting contamination-free and hydrophilic surface also enabled the observed improved cell viability in a biomedical applications. By avoiding aqueous etching or the usage of strong bases, our proposed transfer method is industrially compatible for batch transfer of graphene films towards the real applications.

Electronic Supplementary Material

Download File(s)
6728_ESM.pdf (949.4 KB)

References

[1]

Zhang, Z. B.; Ding, M. C.; Cheng, T.; Qiao, R. X.; Zhao, M. Z.; Luo, M. Y.; Wang, E. Z.; Sun, Y. F.; Zhang, S.; Li, X. G. et al. Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. Nat. Nanotechnol. 2022, 17, 1258–1264.

[2]

Hu, Z. N.; Li, F. F.; Wu, H. T.; Liao, J. H.; Wang, Q.; Chen, G.; Shi, Z. F.; Zhu, Y. Q.; Bu, S. Y.; Zhao, Y. X. et al. Rapid and scalable transfer of large-area graphene wafers. Adv. Mater. 2023, 35, 2300621.

[3]

Yuan, G. W.; Lin, D. J.; Wang, Y.; Huang, X. L.; Chen, W.; Xie, X. D.; Zong, J. Y.; Yuan, Q. Q.; Zheng, H.; Wang, D. et al. Proton-assisted growth of ultra-flat graphene films. Nature 2020, 577, 204–208.

[4]

Wang, M. H.; Huang, M.; Luo, D.; Li, Y. Q.; Choe, M.; Seong, W. K.; Kim, M.; Jin, S.; Wang, M. R.; Chatterjee, S. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 2021, 596, 519–524.

[5]

Nguyen, V. L.; Duong, D. L.; Lee, S. H.; Avila, J.; Han, G.; Kim, Y. M.; Asensio, M. C.; Jeong, S. Y.; Lee, Y. H. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation. Nat. Nanotechnol. 2020, 15, 861–867.

[6]

Tseng, W. S.; Chen, Y. C.; Hsu, C. C.; Lu, C. H.; Wu, C. I.; Yeh, N. C. Direct large-area growth of graphene on silicon for potential ultra-low-friction applications and silicon-based technologies. Nanotechnology 2020, 31, 335602.

[7]

Zhang, Y. H.; Sui, Y. P.; Chen, Z. Y.; Kang, H.; Li, J.; Wang, S.; Zhao, S. W.; Yu, G. H.; Peng, S. A.; Jin, Z. et al. Role of hydrogen and oxygen in the study of substrate surface impurities and defects in the chemical vapor deposition of graphene. Carbon 2021, 185, 82–95.

[8]

Song, J.; Kam, F. Y.; Png, R. Q.; Seah, W. L.; Zhuo, J. M.; Lim, G. K.; Ho, P. K. H.; Chua, L. L. A general method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 2013, 8, 356–362.

[9]

Song, Y. Q.; Zou, W. T.; Lu, Q.; Lin, L.; Liu, Z. F. Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small 2021, 17, 2007600.

[10]

Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Castro Neto, A. H.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

[11]

Leong, W. S.; Wang, H. Z.; Yeo, J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. C.; Mao, Y. W.; Palacios, T.; Buehler, M. J.; Hong, J. Y. et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867.

[12]

Nakatani, M.; Fukamachi, S.; Solís-Fernández, P.; Honda, S.; Kawahara, K.; Tsuji, Y.; Sumiya, Y.; Kuroki, M.; Li, K.; Liu, Q. N. et al. Ready-to-transfer two-dimensional materials using tunable adhesive force tapes. Nat. Electron. 2024, 7, 119–130.

[13]

Zhao, Y. X.; Song, Y. Q.; Hu, Z. N.; Wang, W. D.; Chang, Z. H.; Zhang, Y.; Lu, Q.; Wu, H. T.; Liao, J. H.; Zou, W. T. et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 2022, 13, 4409.

[14]

Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 2017, 8, 14560.

[15]

Fechine, G. J. M.; Martin-Fernandez, I.; Yiapanis, G.; Bentini, R.; Kulkarni, E. S.; de Oliveira, R. V. B.; Hu, X.; Yarovsky, I.; Castro Neto, A. H.; Öezyilmaz, B. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon 2015, 83, 224–231.

[16]

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

[17]

Zhang, X. W.; Xu, C.; Zou, Z. X.; Wu, Z. H.; Yin, S. Q.; Zhang, Z. L.; Liu, J. L.; Xia, Y.; Lin, C. T.; Zhao, P. et al. A scalable polymer-free method for transferring graphene onto arbitrary surfaces. Carbon 2020, 161, 479–485.

[18]

Zhang, J. C.; Jia, K. C.; Huang, Y. F.; Liu, X. T.; Xu, Q. H.; Wang, W. D.; Zhang, R.; Liu, B. Y.; Zheng, L. M.; Chen, H. et al. Intrinsic wettability in pristine graphene. Adv. Mater. 2022, 34, 2103620.

[19]

Matuana, L. M.; Balatinecz, J. J.; Sodhi, R. N.; Park, C. B. Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci. Technol. 2001, 35, 191–201.

[20]

Geeti, D. K.; Niranjan, K. Environmentally benign bio-based waterborne polyesters: Synthesis, thermal-and bio-degradation studies. Prog. Org. Coat. 2019, 127, 419–428.

[21]

Zhao, Y. S.; Ma, Y. Q.; Xiong, Y. H.; Qin, T.; Zhu, Y. L.; Deng, H.; Qin, J. B.; Shi, X. T.; Zhang, G. C. Chemically crosslinked crystalline thermoplastic polyolefin elastomer with good elasticity and improved thermo-mechanical properties. Polymer 2022, 254, 125075.

[22]

Qin, X.; Wang, J. D.; Zhang, Y. L.; Wang, Z.; Li, S.; Zhao, S. Q.; Tan, T. W.; Liu, J.; Zhang, L. Q.; Matyjaszewski, K. Self-assembly strategy for double network elastomer nanocomposites with ultralow energy consumption and ultrahigh wear resistance. Adv. Funct. Mater. 2020, 30, 2003429.

[23]

Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803.

[24]

Yang, Y. P.; Li, J. D.; Yin, J.; Xu, S. G.; Mullan, C.; Taniguchi, T.; Watanabe, K.; Geim, A. K.; Novoselov, K. S.; Mishchenko, A. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 2020, 6, eabd3655

[25]

Pham, P. V.; Bodepudi, S. C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. F. 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 2022, 122, 6514–6613

[26]

Lin L., Zhang J. C., Su H. S., Li J. Y., Sun L. Z., Wang Z. H., Xu F., Liu C., Sergei Lopatin, Zhu Y. H. et al. Towards super-clean graphene. Nature communications, 2019, 10, 1912

[27]

Luo, D.; You, X. Q.; Li, B. W.; Chen, X. J.; Park, H. J.; Jung, M.; Ko, T. Y.; Wong, K.; Yousaf, M.; Chen, X. et al. Role of graphene in water-assisted oxidation of copper in relation to dry transfer of graphene. Chem. Mater. 2017, 29, 4546–4556.

[28]

Luo, D.; Wang, X.; Li, B. W.; Zhu, C. Y.; Huang, M.; Qiu, L.; Wang, M. H.; Jin, S.; Kim, M.; Ding, F. et al. The wet-oxidation of a Cu(111) foil coated by single crystal graphene. Adv. Mater. 2021, 33, 2102697.

[29]

Diaham, S.; Locatelli, M. L.; Lebey, T.; Malec, D. Thermal imidization optimization of polyimide thin films using Fourier transform infrared spectroscopy and electrical measurements. Thin Solid Films 2011, 519, 1851–1856.

[30]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[31]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[32]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[33]

Berland, K.; Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 2014, 89, 035412.

[34]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[35]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

Nano Research
Pages 6795-6802
Cite this article:
Lu Q, Yang J, Zhou C, et al. Ultraclean transfer of graphene by mechanically exfoliating polymer with modified crosslink density. Nano Research, 2024, 17(8): 6795-6802. https://doi.org/10.1007/s12274-024-6728-9
Topics:

477

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 March 2024
Revised: 24 April 2024
Accepted: 28 April 2024
Published: 30 May 2024
© Tsinghua University Press 2024
Return