AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

When mRNA meets gene editing

Weijie Li1,2Chen Wang1,2Yuan Lu1,2( )
Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

The key challenge of gene therapy lies in the delivery of gene editing agents. Compared with DNA, RNA comes with the benefit of lower off-target effects. Different vectors such as virus-like particle (VLP), and lipid nanoparticle (LNP) have demonstrated their potential for mRNA-based delivery for gene editing agents, casting light on curing some genetically defective diseases with higher safety and efficiency.

Abstract

The critical challenge of gene therapy lies in delivering gene editing agents. Compared with DNA, while RNA is less stable and more accessible to degrade, it comes with the benefit of lower off-target effects since permanent insertion is not involved. This review focuses on mRNA-based delivery of gene editing agents, highlighting novel mRNA delivery systems. To provide context, a comparison is made between three main gene editing agents: programmable nucleases, base editors, and prime editors. The potential of Cas\pi and transposons is also discussed in this review. Additionally, a summary of four main barriers to mRNA-based in vivo delivery is provided. Furthermore, this review detailedly introduced different delivery systems, both viral (lentivirus) and non-viral vectors (genome editing via oviductal nucleic acids delivery, lipid nanoparticles, polymer-based nanoparticles, virus-like-particles, extracellular vesicles, and migrasome). Each delivery strategy is assessed by comparing its advantages and disadvantages to offer a comprehensive and objective overview of the delivery system. Moreover, we emphasized the vital role of the protein corona as a critical regulator for nanodelivery. Ultimately, we concluded the challenges of mRNA-based gene editing strategies (RNA stability, targeting, potential immunogenicity, cytotoxicity, heterogeneity, and rational design). The purpose of this review is to guide further research and provide a comprehensive analysis of mRNA-based in vivo delivery of gene editing agents in this promising field.

References

[1]

Korf, B. R.; Pyeritz, R. E.; Grody, W. W. Nature and frequency of genetic disease. In Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics; 7th ed. Pyeritz, R. E.; Korf, B. R.; Grody, W. W., Eds.; Academic Press: San Diego 2019, 2019; pp 47–51.

[2]

Stevenson, D. A.; Carey, J. C. Contribution of malformations and genetic disorders to mortality in a children's hospital. Am. J. Med. Genet. A 2004, 126A, 393–397.

[3]

Porada, C. D.; Stem, C.; Almeida-Porada, G. Gene therapy: The promise of a permanent cure. N. C. Med. J. 2013, 74, 526–529.

[4]

Anzalone, A. V.; Koblan, L. W.; Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020, 38, 824–844.

[5]

Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 2020, 578, 229–236.

[6]

Newby, G. A.; Liu, D. R. In vivo somatic cell base editing and prime editing. Mol. Ther. 2021, 29, 3107–3124

[7]

Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem 2010, 79, 181–211.

[8]

Seol, J. H.; Shim, E. Y.; Lee, S. E. Microhomology-mediated end joining: Good, bad and ugly. Mutat. Res. 2018, 809, 81–87.

[9]

San Filippo, J.; Sung, P.; Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 2008, 77, 229–257.

[10]

Stoddard, B. L. Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modification. Structure 2011, 19, 7–15.

[11]

Urnov, F. D.; Rebar, E. J.; Holmes, M. C.; Zhang, H. S.; Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646.

[12]

Bogdanove, A. J.; Voytas, D. F. TAL effectors: Customizable proteins for DNA targeting. Science 2011, 333, 1843–1846.

[13]

Wang, H. X.; Li, M. Q.; Lee, C. M.; Chakraborty, S.; Kim, H. W.; Bao, G.; Leong, K. W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem. Rev. 2017, 117, 9874–9906

[14]

Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821.

[15]

Wang, D.; Zhang, F.; Gao, G. P. CRISPR-based therapeutic genome editing: Strategies and in vivo delivery by AAV vectors. Cell 2020, 181, 136–150.

[16]

Ferrari, S.; Vavassori, V.; Canarutto, D.; Jacob, A.; Castiello, M. C.; Javed, A. O.; Genovese, P. Gene editing of hematopoietic stem cells: Hopes and hurdles toward clinical translation. Front. Genome Ed. 2021, 3, 618378.

[17]

Raguram, A.; Banskota, S.; Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 2022, 185, 2806–2827.

[18]

Chew, W. L. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 10, e1408.

[19]

Chew, W. L.; Tabebordbar, M.; Cheng, J. K. W.; Mali, P.; Wu, E. Y.; Ng, A. H.; Zhu, K. X.; Wagers, A. J.; Church, G. M. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 2016, 13, 868–874.

[20]

Wang, D.; Mou, H. W.; Li, S. Y.; Li, Y. X.; Hough, S.; Tran, K. R.; Li, J.; Yin, H.; Anderson, D. G.; Sontheimer, E. J. et al. Adenovirus-mediated somatic genome editing of pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 2015, 26, 432–442.

[21]

Wefers, B.; Panda, S. K.; Ortiz, O.; Brandl, C.; Hensler, S.; Hansen, J.; Wurst, W.; Kühn, R. Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nat. Protoc. 2013, 8, 2355–2379.

[22]

Cromer, M. K.; Vaidyanathan, S.; Ryan, D. E.; Curry, B.; Lucas, A. B.; Camarena, J.; Kaushik, M.; Hay, S. R.; Martin, R. M.; Steinfeld, I. et al. Global transcriptional response to CRISPR/Cas9-AAV6-based genome editing in CD34+ hematopoietic stem and progenitor cells. Mol. Ther. 2018, 26, 2431–2442.

[23]

Hattori, Y.; Koga, K.; Izumisawa, T.; Yamasaki, M.; Narishima, R.; Yoshida, S.; Fukui, T.; Maitani, Y. The distribution of mRNA expression and protein after hydrodynamic injection of transgene in mice. Biol. Pharm. Bull. 2009, 32, 755–759.

[24]

Cullis, P. R.; Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 2017, 25, 1467–1475.

[25]

Lyu, P.; Wang, L. X.; Lu, B. S. Virus-like particle mediated CRISPR/Cas9 delivery for efficient and safe genome editing. Life (Basel) 2020, 10, 366.

[26]

Segel, M.; Lash, B.; Song, J. W.; Ladha, A.; Liu, C. C.; Jin, X.; Mekhedov, S. L.; Macrae, R. K.; Koonin, E. V.; Zhang, F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021, 373, 882–889.

[27]

Witzigmann, D.; Kulkarni, J. A.; Leung, J.; Chen, S.; Cullis, P. R.; van der Meel, R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 2020, 159, 344–363.

[28]

Wei, T.; Cheng, Q.; Farbiak, L.; Anderson, D. G.; Langer, R.; Siegwart, D. J. Delivery of tissue-targeted scalpels: Opportunities and challenges for in vivo CRISPR/cas-based genome editing. ACS Nano 2020, 14, 9243–9262.

[29]

Miceli, E.; Kar, M.; Calderón, M. Interactions of organic nanoparticles with proteins in physiological conditions. J. Mater. Chem. B 2017, 5, 4393–4405.

[30]

Urnov, F. D. Genome Editing B.C. (Before CRISPR): Lasting lessons from the “old testament”. CRISPR J. 2018, 1, 34–46.

[31]

Gaj, T.; Gersbach, C. A.; Barbas III, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405

[32]

Miller, J. C.; Tan, S. Y.; Qiao, G. J.; Barlow, K. A.; Wang, J. B.; Xia, D. F.; Meng, X. D.; Paschon, D. E.; Leung, E.; Hinkley, S. J. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011, 29, 143–148.

[33]

Cong, L.; Ran, F. A.; Cox, D.; Lin, S. L.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X. B.; Jiang, W. Y.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823.

[34]

Tycko, J.; Myer, V. E.; Hsu, P. D. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol. Cell 2016, 63, 355–370.

[35]

Komor, A. C.; Badran, A. H.; Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017, 168, 20–36.

[36]

Popovitz, J.; Sharma, R.; Hoshyar, R.; Soo Kim, B.; Murthy, N.; Lee, K. Gene editing therapeutics based on mRNA delivery. Adv. Drug Deliv. Rev. 2023, 200, 115026.

[37]

Song, Y. N.; Liu, Z. Q.; Zhang, Y. X.; Chen, M.; Sui, T. T.; Lai, L. X.; Li, Z. J. Large-fragment deletions induced by Cas9 cleavage while not in the BEs system. Mol. Ther. Nucl. Acids 2020, 21, 523–526.

[38]

Turchiano, G.; Andrieux, G.; Klermund, J.; Blattner, G.; Pennucci, V.; el Gaz, M.; Monaco, G.; Poddar, S.; Mussolino, C.; Cornu, T. I. et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell 2021, 28, 1136–1147.e5.

[39]

Alanis-Lobato, G.; Zohren, J.; McCarthy, A.; Fogarty, N. M. E.; Kubikova, N.; Hardman, E.; Greco, M.; Wells, D.; Turner, J. M. A.; Niakan, K. K. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Proc. Natl. Acad. Sci. USA 2021, 118, e2004832117.

[40]

Conway, A.; Mendel, M.; Kim, K.; McGovern, K.; Boyko, A.; Zhang, L.; Miller, J. C.; DeKelver, R. C.; Paschon, D. E.; Mui, B. L. et al. Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets. Mol. Ther. 2019, 27, 866–877.

[41]

Rees, H. A.; Liu, D. R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018, 19, 770–788.

[42]

Komor, A. C.; Zhao, K. T.; Packer, M. S.; Gaudelli, N. M.; Waterbury, A. L.; Koblan, L. W.; Kim, Y. B.; Badran, A. H.; Liu, D. R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 2017, 3, eaao4774.

[43]

Komor, A. C.; Kim, Y. B.; Packer, M. S.; Zuris, J. A.; Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424.

[44]

Chen, L. W.; Park, J. E.; Paa, P.; Rajakumar, P. D.; Prekop, H. T.; Chew, Y. T.; Manivannan, S. N.; Chew, W. L. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 2021, 12, 1384.

[45]

Gaudelli, N. M.; Komor, A. C.; Rees, H. A.; Packer, M. S.; Badran, A. H.; Bryson, D. I.; Liu, D. R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471.

[46]

Yu, S. Y.; Carlaw, T.; Thomson, T.; Birkenshaw, A.; Basha, G.; Kurek, D.; Huang, C.; Kulkarni, J.; Zhang, L. H.; Ross, C. J. D. A luciferase reporter mouse model to optimize in vivo gene editing validated by lipid nanoparticle delivery of adenine base editors. Mol. Ther. 2023, 31, 1159–1166.

[47]

Stadelmann, C.; Di Francescantonio, S.; Marg, A.; Muthel, S.; Spuler, S.; Escobar, H. mRNA-mediated delivery of gene editing tools to human primary muscle stem cells. Mol. Ther. Nucl. Acids 2022, 28, 47–57.

[48]

Song, C. Q.; Jiang, T. T.; Richter, M.; Rhym, L. H.; Koblan, L. W.; Zafra, M. P.; Schatoff, E. M.; Doman, J. L.; Cao, Y. Y.; Dow, L. E. et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 2020, 4, 125–130.

[49]

Zheng, Q.; Qin, F. M.; Luo, R. J.; Jin, C. H.; Huang, H.; Xi, H.; Xiao, W.; Guo, M. R.; Yang, S. P.; He, S. Y. et al. mRNA-loaded lipid-like nanoparticles for liver base editing via the optimization of central composite design. Adv. Funct. Mater. 2021, 31, 2011068.

[50]

Villiger, L.; Rothgangl, T.; Witzigmann, D.; Oka, R.; Lin, P. J. C.; Qi, W. H.; Janjuha, S.; Berk, C.; Ringnalda, F.; Beattie, M. B. et al. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nat. Biomed. Eng. 2021, 5, 179–189.

[51]

Mok, Y. G.; Lee, J. M.; Chung, E.; Lee, J.; Lim, K.; Cho, S. I.; Kim, J. S. Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nat. Commun. 2022, 13, 4038.

[52]

Anzalone, A. V.; Randolph, P. B.; Davis, J. R.; Sousa, A. A.; Koblan, L. W.; Levy, J. M.; Chen, P. J.; Wilson, C.; Newby, G. A.; Raguram, A. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157.

[53]

Sun, A.; Li, C. P.; Chen, Z. H.; Zhang, S. Y.; Li, D. Y.; Yang, Y.; Li, L. Q.; Zhao, Y. Q.; Wang, K. C.; Li, Z. F. et al. The compact Casπ (Cas12l) 'bracelet' provides a unique structural platform for DNA manipulation. Cell Res. 2023, 33, 229–244.

[54]

Altae-Tran, H.; Kannan, S.; Suberski, A. J.; Mears, K. S.; Demircioglu, F. E.; Moeller, L.; Kocalar, S.; Oshiro, R.; Makarova, K. S.; Macrae, R. K. et al. Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering. Science 2023, 382, eadi1910.

[55]

Macadangdang, B. R.; Makanani, S. K.; Miller, J. F. Accelerated evolution by diversity-generating retroelements. Annu. Rev. Microbiol. 2022, 76, 389–411.

[56]

Saito, M.; Xu, P. Y.; Faure, G.; Maguire, S.; Kannan, S.; Altae-Tran, H.; Vo, S.; Desimone, A.; Macrae, R. K.; Zhang, F. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 2023, 620, 660–668.

[57]

Deng, P. J.; Tan, S. Q.; Yang, Q. Y.; Fu, L. Z.; Wu, Y. C.; Zhu, H. Z.; Sun, L.; Bao, Z. B.; Lin, Y.; Zhang, Q. C. et al. Structural RNA components supervise the sequential DNA cleavage in R2 retrotransposon. Cell 2023, 186, 2865–2879.e20.

[58]

Hirano, S.; Kappel, K.; Altae-Tran, H.; Faure, G.; Wilkinson, M. E.; Kannan, S.; Demircioglu, F. E.; Yan, R.; Shiozaki, M.; Yu, Z. H. et al. Structure of the OMEGA nickase IsrB in complex with ωRNA and target DNA. Nature 2022, 610, 575–581.

[59]

Liu, Z. X.; Zhang, S. Y.; Zhu, H. Z.; Chen, Z. H.; Yang, Y.; Li, L. Q.; Lei, Y.; Liu, Y.; Li, D. Y.; Sun, A. et al. Hydrolytic endonucleolytic ribozyme (HYER) is programmable for sequence-specific DNA cleavage. Science 2024, 383, eadh4859.

[60]

Kontermann, R. E. Strategies for extended serum half-life of protein therapeutics. Curr. Opin. Biotechnol. 2011, 22, 868–876.

[61]

Hendel, A.; Bak, R. O.; Clark, J. T.; Kennedy, A. B.; Ryan, D. E.; Roy, S.; Steinfeld, I.; Lunstad, B. D.; Kaiser, R. J.; Wilkens, A. B. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 2015, 33, 985–989.

[62]

Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692.

[63]

Ballarino, R.; Bouwman, B. A. M.; Crosetto, N. Genome-wide CRISPR off-target dna break detection by the BLISS method. In CRISPR Guide RNA Design. Fulga, T. A.; Knapp, D. J. H. F.; Ferry, Q. R. V., Eds. Humana: New York, 2021, pp, 261–281

[64]

Qin, J. Y.; Xue, L. L.; Gong, N. Q.; Zhang, H. W.; Shepherd, S. J.; Haley, R. M.; Swingle, K. L.; Mitchell, M. J. RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Adv. 2022, 12, 25397–25404.

[65]

Breda, L.; Papp, T. E.; Triebwasser, M. P.; Yadegari, A.; Fedorky, M. T.; Tanaka, N.; Abdulmalik, O.; Pavani, G.; Wang, Y. P.; Grupp, S. A. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 2023, 381, 436–443

[66]

Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320.

[67]

Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412.

[68]

Yang, T. Z.; Martin, P.; Fogarty, B.; Brown, A.; Schurman, K.; Phipps, R.; Yin, V. P.; Lockman, P.; Bai, S. H. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res. 2015, 32, 2003–2014.

[69]

Liu, Y. J.; Zhang, D. Y.; An, Y.; Sun, Y. J.; Li, J.; Zheng, M.; Zou, Y.; Shi, B. Y. Non-invasive PTEN mRNA brain delivery effectively mitigates growth of orthotopic glioblastoma. Nano Today 2023, 49, 101790.

[70]

Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555.

[71]

Sapet, C.; Laurent, N.; Le Gourrierec, L.; Augier, S.; Zelphati, O. In vitro and in vivo magnetofectionTM: A move towards gene therapy. Ann. Biol. Clin. (Paris) 2010, 68, 133–142.

[72]

Stewart, M. P.; Sharei, A.; Ding, X. Y.; Sahay, G.; Langer, R.; Jensen, K. F. In vitro and ex vivo strategies for intracellular delivery. Nature 2016, 538, 183–192

[73]

Schaffer, D. V.; Fidelman, N. A.; Dan, N.; Lauffenburger, D. A. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. 3.0.CO;2-G">Biotechnol. Bioeng. 2000, 67, 598–606.

[74]

Dimitrov, D. S. Virus entry: Molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2004, 2, 109–122.

[75]

Akita, H.; Kudo, A.; Minoura, A.; Yamaguti, M.; Khalil, I. A.; Moriguchi, R.; Masuda, T.; Danev, R.; Nagayama, K.; Kogure, K. et al. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials 2009, 30, 2940–2949.

[76]

Vermeulen, L. M. P.; De Smedt, S. C.; Remaut, K.; Braeckmans, K. The proton sponge hypothesis: Fable or fact. Eur. J. Pharm. Biopharm. 2018, 129, 184–190.

[77]

Braun, T.; Kleusch, C.; Naumovska, E.; Merkel, R.; Csiszár, A. A bioanalytical assay to distinguish cellular uptake routes for liposomes. Cytometry Part A 2016, 89, 301–308.

[78]

You, J. O.; Auguste, D. T. Nanocarrier cross-linking density and pH sensitivity regulate intracellular gene transfer. Nano Lett. 2009, 9, 4467–4473.

[79]

Hu, Y. H.; Litwin, T.; Nagaraja, A. R.; Kwong, B.; Katz, J.; Watson, N.; Irvine, D. J. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett. 2007, 7, 3056–3064.

[80]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[81]

Sakaguchi, N.; Kojima, C.; Harada, A.; Koiwai, K.; Shimizu, K.; Emi, N.; Kono, K. Enhancement of transfection activity of lipoplexes by complexation with transferrin-bearing fusogenic polymer-modified liposomes. Int. J. Pharm. 2006, 325, 186–190.

[82]

Massignani, M.; Canton, I.; Sun, T.; Hearnden, V.; MacNeil, S.; Blanazs, A.; Armes, S. P.; Lewis, A.; Battaglia, G. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes. PLoS One 2010, 5, e10459.

[83]

Miyata, K.; Oba, M.; Nakanishi, M.; Fukushima, S.; Yamasaki, Y.; Koyama, H.; Nishiyama, N.; Kataoka, K. Polyplexes from poly(aspartamide) bearing 1,2-diaminoethane side chains induce pH-selective, endosomal membrane destabilization with amplified transfection and negligible cytotoxicity. J. Am. Chem. Soc. 2008, 130, 16287–16294.

[84]

Dull, T.; Zufferey, R.; Kelly, M.; Mandel, R. J.; Nguyen, M.; Trono, D.; Naldini, L. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 1998, 72, 8463–8471.

[85]

Mock, U.; Riecken, K.; Berdien, B.; Qasim, W.; Chan, E.; Cathomen, T.; Fehse, B. Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Sci. Rep. 2014, 4, 6409.

[86]

Kaminski, A.; Howell, M. T.; Jackson, R. J. Initiation of encephalomyocarditis virus RNA translation: The authentic initiation site is not selected by a scanning mechanism. EMBO J. 1990, 9, 3753–3759.

[87]

Mussolino, C.; Morbitzer, R.; Lütge, F.; Dannemann, N.; Lahaye, T.; Cathomen, T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011, 39, 9283–9293.

[88]

Bubeck, F.; Grimm, D. ‘Hit and run’ therapy averts macular degeneration. Nat. Biomed. Eng. 2021, 5, 132–133.

[89]

Miller, J. B.; Zhang, S. Y.; Kos, P.; Xiong, H.; Zhou, K. J.; Perelman, S. S.; Zhu, H.; Siegwart, D. J. Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem., Int. Ed. 2017, 56, 1059–1063.

[90]

Milone, M. C.; O’Doherty, U. Clinical use of lentiviral vectors. Leukemia 2018, 32, 1529–1541.

[91]

Geurts, A. M.; Cost, G. J.; Freyvert, Y.; Zeitler, B.; Miller, J. C.; Choi, V. M.; Jenkins, S. S.; Wood, A.; Cui, X. X.; Meng, X. D. et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 2009, 325, 433.

[92]

Wang, J. B.; Exline, C. M.; DeClercq, J. J.; Llewellyn, G. N.; Hayward, S. B.; Li, P. W. L.; Shivak, D. A.; Surosky, R. T.; Gregory, P. D.; Holmes, M. C. et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 2015, 33, 1256–1263.

[93]

Matsui, A.; Uchida, S.; Ishii, T.; Itaka, K.; Kataoka, K. Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases. Sci. Rep. 2015, 5, 15810.

[94]

Takahashi, G.; Gurumurthy, C. B.; Wada, K.; Miura, H.; Sato, M.; Ohtsuka, M. GONAD: Genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice. Sci. Rep. 2015, 5, 11406.

[95]

Takabayashi, S.;Aoshima, T.;Kabashima, K.;Aoto, K.;Ohtsuka, M.; Sato, M. i-GONAD (improved genome-editing via oviductal nucleic acids delivery), a convenient in vivo tool to produce genome-edited rats. Sci. Rep. 2018, 8, 12059

[96]

Ohtsuka, M.; Sato, M.; Miura, H.; Takabayashi, S.; Matsuyama, M.; Koyano, T.; Arifin, N.; Nakamura, S.; Wada, K.; Gurumurthy, C. B. i-GONAD: A robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 2018, 19, 25

[97]

Gurumurthy, C. B.; Sato, M.; Nakamura, A.; Inui, M.; Kawano, N.; Islam, A.; Ogiwara, S.; Takabayashi, S.; Matsuyama, M.; Nakagawa, S. et al. Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat. Protoc. 2019, 14, 2452–2482.

[98]

Liu, Z.; Li, Z. H.; Li, B. Nonviral delivery of CRISPR/cas systems in mRNA format. Adv. NanoBiomed Res. 2022, 2, 2200082.

[99]

Bangham, A. D.; Standish, M. M.; Watkins, J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238–252, IN26–IN27.

[100]

Allen, T. M.; Chonn, A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 1987, 223, 42–46.

[101]

Gabizon, A.; Papahadjopoulos, D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA 1988, 85, 6949–6953.

[102]

Hatakeyama, H.; Akita, H.; Harashima, H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Adv. Drug Delivery Rev. 2011, 63, 152–160.

[103]

Li, J.; Chen, Y. C.; Tseng, Y. C.; Mozumdar, S.; Huang, L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Control. Release 2010, 142, 416–421.

[104]

Yang, X. Z.; Dou, S.; Sun, T. M.; Mao, C. Q.; Wang, H. X.; Wang, J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release 2011, 156, 203–211.

[105]

Paunovska, K.; Loughrey, D.; Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022, 23, 265–280.

[106]

Zhang, Y. B.; Sun, C. Z.; Wang, C.; Jankovic, K. E.; Dong, Y. Z. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 2021, 121, 12181–12277.

[107]

Kowalski, P. S.; Rudra, A.; Miao, L.; Anderson, D. G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol. Ther. 2019, 27, 710–728.

[108]

Reichmuth, A. M.; Oberli, M. A.; Jaklenec, A.; Langer, R.; Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 2016, 7, 319–334

[109]

Patel, S.; Ashwanikumar, N.; Robinson, E.; DuRoss, A.; Sun, C.; Murphy-Benenato, K. E.; Mihai, C.; Almarsson, Ö.; Sahay, G. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 2017, 17, 5711–5718.

[110]

Liang, X. Q.; Potter, J.; Kumar, S.; Zou, Y. F.; Quintanilla, R.; Sridharan, M.; Carte, J.; Chen, W.; Roark, N.; Ranganathan, S. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 2015, 208, 44–53.

[111]

Zhang, X. F.; Zhao, W. Y.; Nguyen, G. N.; Zhang, C. X.; Zeng, C. X.; Yan, J. Y.; Du, S.; Hou, X. C.; Li, W. Q.; Jiang, J. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 2020, 6, eabc2315.

[112]

Li, B.; Luo, X.; Deng, B. B.; Wang, J. F.; McComb, D. W.; Shi, Y. M.; Gaensler, K. M. L.; Tan, X.; Dunn, A. L.; Kerlin, B. A. et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015, 15, 8099–8107.

[113]

Herrera-Barrera, M.; Gautam, M.; Lokras, A.; Vlasova, K.; Foged, C.; Sahay, G. Lipid nanoparticle-enabled intracellular delivery of prime editors. AAPS J. 2023, 25, 65.

[114]

Liu, S.; Cheng, Q.; Wei, T.; Yu, X. L.; Johnson, L. T.; Farbiak, L.; Siegwart, D. J. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 2021, 20, 701–710.

[115]

Rurik, J. G.; Tombácz, I.; Yadegari, A.; Méndez Fernández, P. O.; Shewale, S. V.; Li, L.; Kimura, T.; Soliman, O. Y.; Papp, T. E.; Tam, Y. K. et al. CAR T cells produced in vivo to treat cardiac injury. Science 2022, 375, 91–96.

[116]

Whitley, J.; Zwolinski, C.; Denis, C.; Maughan, M.; Hayles, L.; Clarke, D.; Snare, M.; Liao, H.; Chiou, S.; Marmura, T. et al. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl. Res. 2022, 242, 38–55.

[117]

Halamoda-Kenzaoui, B.; Bremer-Hoffmann, S. Main trends of immune effects triggered by nanomedicines in preclinical studies. Int. J. Nanomedicine 2018, 13, 5419–5431.

[118]

Abrams, M. T.; Koser, M. L.; Seitzer, J.; Williams, S. C.; DiPietro, M. A.; Wang, W. M.; Shaw, A. W.; Mao, X. Z.; Jadhav, V.; Davide, J. P. et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: Effect of dexamethasone co-treatment. Mol. Ther. 2010, 18, 171–180.

[119]

Ozpolat, B.; Sood, A. K.; Lopez-Berestein, G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev. 2014, 66, 110–116.

[120]

Zhang, J.; Li, X.; Huang, L. Non-viral nanocarriers for siRNA delivery in breast cancer. J. Control. Release 2014, 190, 440–450.

[121]

Lee, J. M.; Yoon, T. J.; Cho, Y. S. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Res. Int. 2013, 2013, 782041.

[122]

Yang, W. Q.; Mixich, L.; Boonstra, E.; Cabral, H. Polymer-based mRNA delivery strategies for advanced therapies. Adv. Healthc. Mater. 2023, 12, 2202688.

[123]

Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

[124]

Xu, C. F.; Lu, Z. D.; Luo, Y. L.; Liu, Y.; Cao, Z. T.; Shen, S.; Li, H. J.; Liu, J.; Chen, K. G.; Chen, Z. Y. et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat. Commun. 2018, 9, 4092.

[125]

Zhang, Y.; Shen, S.; Zhao, G.; Xu, C. F.; Zhang, H. B.; Luo, Y. L.; Cao, Z. T.; Shi, J.; Zhao, Z. B.; Lian, Z. X. et al. In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials 2019, 217, 119302

[126]

Blanchard, E. L.; Vanover, D.; Bawage, S. S.; Tiwari, P. M.; Rotolo, L.; Beyersdorf, J.; Peck, H. E.; Bruno, N. C.; Hincapie, R.; Michel, F. et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat. Biotechnol. 2021, 39, 717–726.

[127]

Abbasi, S.; Uchida, S.; Toh, K.; Tockary, T. A.; Dirisala, A.; Hayashi, K.; Fukushima, S.; Kataoka, K. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. J. Control. Release 2021, 332, 260–268.

[128]

Guo, J. J.; Wan, T.; Li, B. W.; Pan, Q.; Xin, H. H.; Qiu, Y. Y.; Ping, Y. Rational design of poly(disulfide)s as a universal platform for delivery of CRISPR-Cas9 machineries toward therapeutic genome editing. ACS Cent. Sci. 2021, 7, 990–1000.

[129]

Yang, T. H.; Xia, L.; Li, G.; Zhao, J.; Li, J.; Ge, J. H.; Yuan, Q. G.; Zhang, J. J.; He, K.; Xia, Q. Novel bionic inspired nanosystem construction for precise delivery of mRNA. Front. Bioeng. Biotechnol. 2023, 11, 1160509.

[130]

Zhao, P.; Zheng, Y. S.; Liu, X. Y. Progress in study on virus-like particles as vaccine and vector. Chin. J. Biol. 2009, 22, 515–517.

[131]

Lyu, P.; Lu, Z. Y.; Cho, S. I.; Yadav, M.; Yoo, K. W.; Atala, A.; Kim, J. S.; Lu, B. S. Adenine base editor ribonucleoproteins delivered by lentivirus-like particles show high on-target base editing and undetectable RNA off-target activities. CRISPR J. 2021, 4, 69–81.

[132]

Briggs, J. A. G.; Simon, M. N.; Gross, I.; Kräusslich, H. G.; Fuller, S. D.; Vogt, V. M.; Johnson, M. C. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 2004, 11, 672–675.

[133]

Lingappa, J. R.; Reed, J. C.; Tanaka, M.; Chutiraka, K.; Robinson, B. A. How HIV-1 Gag assembles in cells: Putting together pieces of the puzzle. Virus Res. 2014, 193, 89–107.

[134]

De Guzman, R. N.; Wu, Z. R.; Stalling, C. C.; Pappalardo, L.; Borer, P. N.; Summers, M. F. Structure of the HIV-1 nucleocapsid protein bound to the SL3 Ψ-RNA recognition element. Science 1998, 279, 384–388.

[135]

Spearman, P.; Wang, J. J.; Vander Heyden, N.; Ratner, L. Identification of human immunodeficiency virus type 1 Gag protein domains essential to membrane binding and particle assembly. J. Virol. 1994, 68, 3232–3242.

[136]

Ganser-Pornillos, B. K.; von Schwedler, U. K.; Stray, K. M.; Aiken, C.; Sundquist, W. I. Assembly properties of the human immunodeficiency virus type 1 CA protein. J. Virol. 2004, 78, 2545–2552.

[137]

Galla, M.; Will, E.; Kraunus, J.; Chen, L.; Baum, C. Retroviral pseudotransduction for targeted cell manipulation. Mol. Cell 2004, 16, 309–315.

[138]

Basyuk, E.; Galli, T.; Mougel, M.; Blanchard, J. M.; Sitbon, M.; Bertrand, E. Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. Dev. Cell 2003, 5, 161–174.

[139]

Lu, B. S.; Javidi-Parsijani, P.; Makani, V.; Mehraein-Ghomi, F.; Sarhan, W. M.; Sun, D. J.; Yoo, K. W.; Atala, Z. P.; Lyu, P.; Atala, A. Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing. Nucleic Acids Res. 2019, 47, e44.

[140]

Knopp, Y.; Geis, F. K.; Heckl, D.; Horn, S.; Neumann, T.; Kuehle, J.; Meyer, J.; Fehse, B.; Baum, C.; Morgan, M. et al. Transient retrovirus-based CRISPR/Cas9 all-in-one particles for efficient, targeted gene knockout. Mol. Ther. Nucl. Acids 2018, 13, 256–274.

[141]

Banskota, S.; Raguram, A.; Suh, S.; Du, S. W.; Davis, J. R.; Choi, E. H.; Wang, X.; Nielsen, S. C.; Newby, G. A.; Randolph, P. B. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022, 185, 250–265.e16.

[142]

Gurumurthy, C. B.; Quadros, R. M.; Ohtsuka, M. Prototype mouse models for researching SEND-based mRNA delivery and gene therapy. Nat. Protoc. 2022, 17, 2129–2138.

[143]

Michael, A.; Bajracharya, S. D.; Yuen, P. S. T.; Zhou, H.; Star, R. A.; Illei, G. G.; Alevizos, I. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010, 16, 34–38.

[144]

Rabinowits, G.; Gerçel-Taylor, C.; Day, J. M.; Taylor, D. D.; Kloecker, G. H. Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer 2009, 10, 42–46.

[145]

Mashel, T. V.; Tarakanchikova, Y. V.; Muslimov, A. R.; Zyuzin, M. V.; Timin, A. S.; Lepik, K. V.; Fehse, B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020, 258, 120282.

[146]

Nolte-‘t Hoen, E.; Cremer, T.; Gallo, R. C.; Margolis, L. B. Extracellular vesicles and viruses: Are they close relatives. Proc.Natl. Acad. Sci. USA 2016, 113, 9155–9161.

[147]

Kulkarni, J. A.; Witzigmann, D.; Thomson, S. B.; Chen, S.; Leavitt, B. R.; Cullis, P. R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 2021, 16, 630–643.

[148]

Tian, Y. H.; Li, S. P.; Song, J.; Ji, T. J.; Zhu, M. T.; Anderson, G. J.; Wei, J. Y.; Nie, G. J. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014, 35, 2383–2390.

[149]

Mashouri, L.; Yousefi, H.; Aref, A. R.; Ahadi, A. M.; Molaei, F.; Alahari, S. K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer 2019, 18, 75.

[150]

Simpson, R. J.; Lim, J. W. E.; Moritz, R. L.; Mathivanan, S. Exosomes: Proteomic insights and diagnostic potential. Expert Rev. Proteomics 2009, 6, 267–283.

[151]

Sung, B. H.; Ketova, T.; Hoshino, D.; Zijlstra, A.; Weaver, A. M. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun. 2015, 6, 7164.

[152]

Minciacchi, V. R.; Freeman, M. R.; Di Vizio, D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol. 2015, 40, 41–51.

[153]

Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

[154]

Liu, C. Y.; Su, C. Q. Design strategies and application progress of therapeutic exosomes. Theranostics 2019, 9, 1015–1028.

[155]

Yang, T. Z.; Fogarty, B.; LaForge, B.; Aziz, S.; Pham, T.; Lai, L.; Bai, S. H. Delivery of small interfering rna to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J. 2017, 19, 475–486.

[156]

Li, Z.;Zhou, X.;Wei, M.;Gao, X.;Zhao, L.;Shi, R.;Sun, W.;Duan, Y.;Yang, G.; Yuan, L. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano letters 2018, 19, 19–28.

[157]

Liu, M.;Hu, S.;Yan, N.;Popowski, K. D.; Cheng, K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 2024, 19, 565–575

[158]

Amiri, A.; Bagherifar, R.; Ansari Dezfouli, E.; Kiaie, S. H.; Jafari, R.; Ramezani, R. Exosomes as bio-inspired nanocarriers for RNA delivery: Preparation and applications. J. Transl. Med. 2022, 20, 1–2.

[159]

Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.

[160]

Requejo, K. I.; Liopo, A. V.; Derry, P. J.; Zubarev, E. R. Improving the shape yield and long-term stability of gold nanoprisms with Poly(Vinylpyrrolidone). Langmuir 2019, 35, 9777–9784.

[161]

Austin, L. A.; Mackey, M. A.; Dreaden, E. C.; El-Sayed, M. A. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 2014, 88, 1391–1417.

[162]

Luo, Z.; Hou, J.; Menin, L.; Ong, Q. K.; Stellacci, F. Evolution of the ligand shell morphology during ligand exchange reactions on gold nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 13521–13525.

[163]

Umair, M.; Javed, I.; Rehman, M.; Madni, A.; Javeed, A.; Ghafoor, A.; Ashraf, M. Nanotoxicity of inert materials: The case of gold, silver and iron. J. Pharm. Pharm. Sci. 2016, 19, 161–180.

[164]

Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327.

[165]

Colangelo, E.; Comenge, J.; Paramelle, D.; Volk, M.; Chen, Q. B.; Lévy, R. Characterizing self-assembled monolayers on gold nanoparticles. Bioconjugate Chem. 2017, 28, 11–22.

[166]

Ding, Y.; Jiang, Z. W.; Saha, K.; Kim, C. S.; Kim, S. T.; Landis, R. F.; Rotello, V. M. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 2014, 22, 1075–1083.

[167]

Yeom, J. H.; Ryou, S. M.; Won, M.; Park, M.; Bae, J.; Lee, K. Inhibition of xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA. PLoS One 2013, 8, e75369.

[168]

Zhou, Y. X.; Quan, G. L.; Wu, Q. L.; Zhang, X. X.; Niu, B. Y.; Wu, B. Y.; Huang, Y.; Pan, X.; Wu, C. B. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B 2018, 8, 165–177.

[169]

Shin, H.; Kang, S.; Won, C.; Min, D. H. Enhanced local delivery of engineered IL-2 mRNA by porous silica nanoparticles to promote effective antitumor immunity. ACS Nano 2023, 17, 17554–17567.

[170]

Byun, M. J.; Lim, J.; Kim, S. N.; Park, D. H.; Kim, T. H.; Park, W.; Park, C. G. Advances in nanoparticles for effective delivery of RNA therapeutics. BioChip J. 2022, 16, 128–145.

[171]

Jiménez-Balsa, A.; Pinto, S.; Quartin, E.; Lino, M. M.; Francisco, V.; Ferreira, L. Nanoparticles conjugated with photocleavable linkers for the intracellular delivery of biomolecules. Bioconjugate Chem. 2018, 29, 1485–1489.

[172]

Singh, D.; Singh, M. Hepatocellular-targeted mRNA delivery using functionalized selenium nanoparticles in vitro. Pharmaceutics 2021, 13, 298.

[173]

Lawson, H. D.; Walton, S. P.; Chan, C. Metal-organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020.

[174]
Lawson, H.; Nguyen, H.; Tupe, A.; Arral, M.; Lee, K.; Lu, M. R.; Whitehead, K.; Zheng, S. Y. Synthetic strategy for mRNA encapsulation and gene delivery with metal-organic frameworks. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-mlcss. This content is a preprint and has not been peer-reviewed.
[175]

Yu, J. M.; Kuwentrai, C.; Gong, H. R.; Li, R. H.; Zhang, B. Z.; Lin, X. S.; Wang, X. L.; Huang, J. D.; Xu, C. J. Intradermal delivery of mRNA using cryomicroneedles. Acta Biomater. 2022, 148, 133–141.

[176]

Vander Straeten, A.; Sarmadi, M.; Daristotle, J. L.; Kanelli, M.; Tostanoski, L. H.; Collins, J.; Pardeshi, A.; Han, J.; Varshney, D.; Eshaghi, B. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 2024, 42, 510–517.

[177]

Ma, L.; Li, Y.; Peng, J. Y.; Wu, D. N.; Zhao, X. X.; Cui, Y. T.; Chen, L. L.; Yan, X. J.; Du, Y. A.; Yu, L. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 2015, 25, 24–38.

[178]

Yu, S. B.; Yu, L. Migrasome biogenesis and functions. FEBS J. 2022, 289, 7246–7254.

[179]

Peigneux, A.; Glitscher, E. A.; Charbaji, R.; Weise, C.; Wedepohl, S.; Calderon, M.; Jimenez-Lopez, C.; Hedtrich, S. Protein corona formation and its influence on biomimetic magnetite nanoparticles. J. Mater. Chem. B 2020, 8, 4870–4882.

[180]

AlléAaemann, E.; Gravel, P.; Leroux, J. C.; Balant, L.; Gurny, R. Kinetics of blood component adsorption on poly(D,L-lactic acid) nanoparticles: Evidence of complement C3 component involvement. 3.0.CO;2-9">J. Biomed. Mater. Res. 1997, 37, 229–234.

[181]

Ehrenstein, M. R.; Notley, C. A. The importance of natural IgM: Scavenger, protector and regulator. Nat. Rev. Immunol. 2010, 10, 778–786.

[182]

Chen, F. F.; Wang, G. K.; Griffin, J. I.; Brenneman, B.; Banda, N. K.; Holers, V. M.; Backos, D. S.; Wu, L. P.; Moghimi, S. M.; Simberg, D. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol. 2017, 12, 387–393.

[183]

Gao, H. L. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B 2016, 6, 268–286.

[184]

Kreuter, J.; Hekmatara, T.; Dreis, S.; Vogel, T.; Gelperina, S.; Langer, K. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J. Control. Release 2007, 118, 54–58.

[185]

Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Delivery Rev. 2009, 61, 428–437.

[186]

Kirpotin, D. B.; Drummond, D. C.; Shao, Y.; Shalaby, M. R.; Hong, K.; Nielsen, U. B.; Marks, J. D.; Benz, C. C.; Park, J. W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006, 66, 6732–6740.

[187]

Seeman, N. C.; Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 2018, 3, 17068.

[188]

Amir, Y.; Ben-Ishay, E.; Levner, D.; Ittah, S.; Abu-Horowitz, A.; Bachelet, I. Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 2014, 9, 353–357.

[189]

Wang, H. Z.; Guo, P. X. Radiolabeled RNA nanoparticles for highly specific targeting and efficient tumor accumulation with favorable in vivo biodistribution. Mol. Pharmaceutics 2021, 18, 2924–2934.

[190]

Lee, H.; Lytton-Jean, A. K. R.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 2012, 7, 389–393.

[191]

Xu, T. T.; Yu, S.; Sun, Y.; Wu, S. J.; Gao, D.; Wang, M. Y.; Wang, Z. Z.; Tian, Y.; Min, Q. H.; Zhu, J. J. DNA origami frameworks enabled self-protective siRNA delivery for dual enhancement of chemo-photothermal combination therapy. Small 2021, 17, 2101780.

[192]

Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. 2015, 127, 12197–12201.

[193]

Sun, W. J.; Wang, J. Q.; Hu, Q. Y.; Zhou, X. W.; Khademhosseini, A.; Gu, Z. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Sci. Adv. 2020, 6, eaba2983.

[194]

Ha, J. S.; Lee, J. S.; Jeong, J.; Kim, H.; Byun, J.; Kim, S. A.; Lee, H. J.; Chung, H. S.; Lee, J. B.; Ahn, D. R. Poly-sgRNA/siRNA ribonucleoprotein nanoparticles for targeted gene disruption. J. Control. Release 2017, 250, 27–35.

[195]

Ding, F.; Huang, X. G.; Gao, X. H.; Xie, M.; Pan, G. F.; Li, Q. F.; Song, J.; Zhu, X. Y.; Zhang, C. A non-cationic nucleic acid nanogel for the delivery of the CRISPR/Cas9 gene editing tool. Nanoscale 2019, 11, 17211–17215.

[196]

Huang, X. G.; Zheng, R.; Ding, F.; Yang, J. P.; Xie, M.; Liu, X. L.; Li, J.; Feng, J.; Zhu, X. Y.; Zhang, C. Efficient delivery of mRNA using crosslinked nucleic acid nanogel as a carrier. ACS Mater. Lett. 2020, 2, 1509–1515.

[197]

Liu, J. B.; Wu, T. T.; Lu, X. H.; Wu, X. H.; Liu, S. L.; Zhao, S.; Xu, X. H.; Ding, B. Q. A self-assembled platform based on branched DNA for sgRNA/Cas9/antisense delivery. J. Am. Chem. Soc. 2019, 141, 19032–19037.

[198]

Yang, W. Nucleases: Diversity of structure, function and mechanism. Quart. Rev. Biophys. 2011, 44, 1–93.

[199]

Wu, X. A.; Choi, C. H. J.; Zhang, C.; Hao, L. L.; Mirkin, C. A. Intracellular fate of spherical nucleic acid nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7726–7733.

[200]
Liu, B.; Dong, X. L.; Zheng, C. W.; Keener, D.; Chen, Z. X.; Cheng, H. Y.; Watts, J. K.; Xue, W.; Sontheimer, E. J. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat. Biotechnol., in press, DOI: 10.1038/s41587-023-01947-w.
[201]

Liu, B.; Dong, X. L.; Cheng, H. Y.; Zheng, C. W.; Chen, Z. X.; Rodríguez, T. C.; Liang, S. Q.; Xue, W.; Sontheimer, E. J. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat. Biotechnol. 2022, 40, 1388–1393.

[202]

Mulroney, T. E.; Poyry, T.; Yam-Puc, J. C.; Rust, M.; Harvey, R. F.; Kalmar, L.; Horner, E.; Booth, L.; Ferreira, A. P.; Stoneley, M. et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 2024, 625, 189–194

[203]

Metkar, M.; Pepin, C. S.; Moore, M. J. Tailor made: The art of therapeutic mRNA design. Nat. Rev. Drug Discov. 2024, 23, 67–83.

[204]

Ling, S. K.; Yang, S. Q.; Hu, X. D.; Yin, D.; Dai, Y.; Qian, X. Q.; Wang, D. W.; Pan, X. Y.; Hong, J. X.; Sun, X. D. et al. Lentiviral delivery of co-packaged Cas9 mRNA and a vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat. Biomed. Eng. 2021, 5, 144–156.

[205]

Lv, H. T.; Zhang, S. B.; Wang, B.; Cui, S. H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 2006, 114, 100–109.

[206]

Li, J. L.; Han, Y.; Wang, S.; Wu, X. L.; Cao, J. M.; Sun, T. Circular RNAs: Biogenesis, biological functions, and roles in myocardial infarction. Int. J. Mol. Sci. 2023, 24, 4233.

[207]

Poppleton, E.; Urbanek, N.; Chakraborty, T.; Griffo, A.; Monari, L.; Göpfrich, K. RNA origami: Design, simulation and application. RNA Biol. 2023, 20, 510–524.

[208]

Hue, K. K.;Cohen, S. D.; Bechhofer, D. H. A polypurine sequence that acts as a 5'messenger-RNA stabilizer in Bacillus subtilis. J. Bacteriol 1995, 177, 3465–3471

[209]

Price, P. M.; Mahmoud, W. E.; Al-Ghamdi, A. A.; Bronstein, L. M. Magnetic drug delivery: Where the field is going. Front. Chem. 2018, 6, 619.

Nano Research
Pages 7337-7356
Cite this article:
Li W, Wang C, Lu Y. When mRNA meets gene editing. Nano Research, 2024, 17(8): 7337-7356. https://doi.org/10.1007/s12274-024-6729-8
Topics:

500

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 March 2024
Revised: 28 April 2024
Accepted: 29 April 2024
Published: 01 June 2024
© Tsinghua University Press 2024
Return