Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The introduction of small size non-metal elements (e.g., oxygen) into solid solution alloys may be a promising strategy for fabricating efficient Pt-based catalysts with high activity and stability toward oxygen reduction reaction (ORR). Herein, oxygen interstitially inserted PtCu (O-PtCu) alloys are firstly designed by an oxygen-microalloying strategy, through ultraviolet (UV) irradiation-assisted galvanic replacement in an aqueous solution containing H2PtCl6 and Cu2O nanowires as sacrificial templates. The obtained O-PtCu alloys feature a typical face-centered cubic (FCC) structure with majority Pt, Cu atoms as building bricks and trace interstitial oxygen (1.65 wt.%) existed in the octahedral sites surrounding Cu atoms, leading to a short-range disordered structure. The alloy reaches a recorded half-wave potential of 0.96 V (vs. reversible hydrogen electrode (RHE)) and mass activity of 0.48 A·mgPt−1, much higher than those of commercial Pt/C. During the accelerated degradation test (ADT), the mass activity lost only 4.2% after 10k cycles, while the commercial Pt/C lost 66.7% under the same conditions. Compared with pure Pt and undoped PtCu alloy, the remarkably improved performance can be attributed to the lattice distortion and energy band reconstruction caused by the interstitial oxygen atoms in form of Cu–O bonds. Moreover, the stable Cu–O bonds delay the possible place exchange between surface Pt atoms and surface-adsorbed oxygen species, thereby hindering Pt dissolution, providing a new paradigm to address Pt degradation issue. Therefore, the introduction of interstitial oxygen into Pt-based alloys may be a facile and smart strategy for the development of advanced Pt-based alloys electrocatalysts.
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.
Ma, Q. L.; Mu, S. C. Acidic oxygen evolution reaction: Mechanism, catalyst classification, and enhancement strategies. Interdiscip. Mater. 2023, 2, 53–90.
Jiang, B. W.; Zhu, J. W.; Xia, Z. Z.; Lyu, J. H.; Li, X. C.; Zheng, L. R.; Chen, C.; Chaemchuen, S.; Bu, T. L.; Verpoort, F. et al. Correlating single-atomic ruthenium interdistance with long-range interaction boosts hydrogen evolution reaction kinetics. Adv. Mater. 2024, 36, 2310699.
Zhu, G. H.; Yang, H. Y.; Jiang, Y.; Sun, Z. Q.; Li, X. P.; Yang, J. P.; Wang, H. F.; Zou, R. J.; Jiang, W.; Qiu, P. P. et al. Modulating the electronic structure of FeCo nanoparticles in N-doped mesoporous carbon for efficient oxygen reduction reaction. Adv. Sci. 2022, 9, 2200394.
Zhu, B.; Wang, Y. Q.; Dluhoš, J.; London, A. J.; Gorley, M.; Whiting, M. J.; Sui, T. A novel pathway for multiscale high-resolution time-resolved residual stress evaluation of laser-welded Eurofer97. Sci. Adv. 2022, 8, eabl4592.
Liu, B. W.; Wang, S. H.; Feng, R. H.; Ni, Y. M.; Song, F.; Liu, Q. L. Anchoring bimetal single atoms and alloys on N-doping-carbon nanofiber networks for an efficient oxygen reduction reaction and zinc-air batteries. ACS Appl. Mater. Interfaces 2022, 14, 38739–38749.
Bredar, A. R. C.; Blanchet, M. D.; Burton, A. R.; Matthews, B. E.; Spurgeon, S. R.; Comes, R. B.; Farnum, B. H. Oxygen reduction electrocatalysis with epitaxially grown spinel MnFe2O4 and Fe3O4. ACS Catal. 2022, 12, 3577–3588.
Yu, X. D.; Wang, Z. H.; Ren, R. Z.; Ma, M. J.; Xu, C. M.; Qiao, J. S.; Sun, W.; Sun, K. N. In situ self-reconstructed nanoheterostructure catalysts for promoting oxygen reduction reaction. ACS Energy Lett. 2022, 7, 2961–2969
Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.
Xu, X. L.; Zhang, X. M.; Kuang, Z. C.; Xia, Z. X.; Rykov, A. I.; Yu, S. S.; Wang, J. H.; Wang, S. L.; Sun, G. Q. Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site. Appl. Catal. B Environ. 2022, 309, 121290.
Li, L. F.; Wen, Y. D.; Han, G. K.; Liu, Y. X.; Song, Y. J.; Zhang, W.; Sun, J.; Du, L.; Kong, F. P.; Ma, Y. L. et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction. Chem. Eng. J. 2022, 437, 135320.
da Silva, M. L. N.; Regone, W.; Button, S. T. Microstructure and mechanical properties of microalloyed steel forgings manufactured from cross-wedge-rolled preforms. Scr. Mater. 2006, 54, 213–217.
Mousavi Anijdan, S. H.; Sediako, D.; Yue, S. Optimization of flow stress in cool deformed Nb-microalloyed steel by combining strain induced transformation of retained austenite, cooling rate and heat treatment. Acta Mater. 2012, 60, 1221–1229.
Lu, Z. P.; Liu, C. T. Role of minor alloying additions in formation of bulk metallic glasses: A review. J. Mater. Sci. 2004, 39, 3965–3974.
Dong, F. T.; Venezuela, J.; Li, H. X.; Shi, Z. M.; Zhou, Q. J.; Chen, L. S.; Chen, J.; Du, L. X.; Atrens, A. Effect of vanadium and rare earth microalloying on the hydrogen embrittlement susceptibility of a Fe-18Mn-0.6C TWIP steel studied using the linearly increasing stress test. Corros. Sci. 2021, 185, 109440.
Liu, Y.; Sun, Y. H.; Wu, H. T. Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel. Int. J. Miner. Metall. Mater. 2021, 28, 1011–1021.
Wang, Y. X.; Yang, H.; Lim, G.; Li, Y. Glass formation enhanced by oxygen in binary Zr-Cu system. Scr. Mater. 2010, 62, 682–685.
Mizuno, A.; Harada, T.; Watanabe, M. Effect of minor addition of oxygen on bulk metallic glass formation of binary Cu-Zr alloys via containerless processing. Phys. Status Solidi B 2020, 257, 2000140.
Cao, D.; Wu, Y.; Li, H. X.; Liu, X. J.; Wang, H.; Wang, X. Z.; Lu, Z. P. Beneficial effects of oxygen addition on glass formation in a high-entropy bulk metallic glass. Intermetallics 2018, 99, 44–50.
Yang, W. M.; Wang, Q. Q.; Ling, H. B.; Liu, H. S.; Xue, L.; He, Y. Z.; Li, Q.; Shen, B. L. Oxygen-driven impurities scavenging before solidification of Fe-based metallic glasses. J. Alloys Compd. 2019, 773, 401–412.
Chang, C. T.; Zhang, J. H.; Shen, B. L.; Wang, W. H.; Inoue, A. Pronounced enhancement of glass-forming ability of Fe-Si-B-P bulk metallic glass in oxygen atmosphere. J. Mater. Res. 2014, 29, 1217–1222.
Sordelet, D. J.; Yang, X. Y.; Rozhkova, E. A.; Besser, M. F.; Kramer, M. J. Oxygen-stabilized glass formation in Zr80Pt20 melt-spun ribbons. Appl. Phys. Lett. 2003, 83, 69–71.
Li, H. X.; Gao, J. E.; Jiao, Z. B.; Wu, Y.; Lu, Z. P. Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass. Appl. Phys. Lett. 2009, 95, 161905.
Zhang, H.; Wang, Q. Y.; Gong, X. F.; Wang, T. J.; Zhang, W.; Chen, K.; Wang, C.; Liu, Y. J.; Wang, Q. Y. Dependence on temperature of compression behavior and deformation mechanisms of nickel-based single crystal CMSX-4. J. Alloys Compd. 2021, 866, 158878.
Wang, T.; Hou, Q. Q.; Zhang, L. S. Enhanced heterogeneity and plasticity in a Zr-Cu-Al bulk metallic glass with micro-addition of oxygen. Mater. Sci. Eng. A 2022, 831, 142222.
Chen, T. Y.; Foo, C.; Tsang, S. C. E. Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chem. Sci. 2021, 12, 517–532.
Jiang, K.; Chang, J. F.; Wang, H.; Brimaud, S.; Xing, W.; Behm, R. J.; Cai, W. B. Small addition of boron in palladium catalyst, big improvement in fuel cell’s performance: What may interfacial spectroelectrochemistry tell. ACS Appl. Mater. Interfaces 2016, 8, 7133–7138.
Zhang, C. H.; Liu, W. D.; Chen, C. X.; Ni, P. J.; Wang, B.; Jiang, Y. Y.; Lu, Y. Z. Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications. Nanoscale 2022, 14, 2915–2942.
Kuttiyiel, K. A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R. R. Nitride stabilized PtNi core–shell nanocatalyst for high oxygen reduction activity. Nano Lett. 2012, 12, 6266–6271.
Yang, L. T.; Bai, J. S.; Zhang, N. S.; Jiang, Z.; Wang, Y.; Xiao, M. L.; Liu, C. P.; Zhu, S. Y.; Xu, Z. J.; Ge, J. J. et al. Rare earth evoked subsurface oxygen species in platinum alloy catalysts enable durable fuel cells. Angew. Chem., Int. Ed. 2024, 63, e202315119.
Wang, W.; Zhao, H.; Zhao, X. K.; Rong, J. F.; Liu, N.; Yu, P.; Xie, J. X.; Wu, G. H.; Li, H.; Xin, M. D. et al. Sulfur-doped Pt/C catalyst for propane dehydrogenation with improved atomic utilization and stability. Catal. Today 2024, 433, 114691.
Guo, K.; Fan, D. P.; Bao, J. C.; Li, Y. F.; Xu, D. D. Atomic-level phosphorus-doped ultrathin Pt nanodendrites as efficient electrocatalysts. Adv. Funct. Mater. 2022, 32, 2208057.
Zhao, X. R.; Xi, C.; Zhang, R.; Song, L.; Wang, C. Y.; Spendelow, J. S.; Frenkel, A. I.; Yang, J.; Xin, H. L.; Sasaki, K. High-performance nitrogen-doped intermetallic PtNi catalyst for the oxygen reduction reaction. ACS Catal. 2020, 10, 10637–10645.
Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2021, 11, 355–363.
Xiong, Y. J.; Ma, Y. N.; Zou, L. L.; Han, S. B.; Chen, H.; Wang, S.; Gu, M.; Shen, Y.; Zhang, L. P.; Xia, Z. H. et al. N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction. J. Catal. 2020, 382, 247–255.
Shi, Y. F.; Schimmenti, R.; Zhu, S. Q.; Venkatraman, K.; Chen, R. H.; Chi, M. F.; Shao, M. H.; Mavrikakis, M.; Xia, Y. N. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 2022, 144, 2556–2568.
Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.
Boone, C. V.; Maia, G. Lowering metal loadings onto Pt-Pd-Cu/graphene nanoribbon nanocomposites affects electrode collection efficiency and oxygen reduction reaction performance. Electrochim. Acta 2019, 303, 192–203.
Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.
Guo, W. X.; Cheng, L. M.; Gao, X. P.; Xu, J.; Chen, C.; Liu, P. G.; He, D. Y.; Tian, L.; Song, J.; Zhou, H. et al. Hierarchical porous Pt/ZrO2 nanoframework for efficient oxygen reduction reaction. ACS Catal. 2023, 13, 5397–5405.
Sun, C. Y.; Wen, R.; Qin, Y. F.; Wang, L. X.; Wang, Y. F.; Dou, M. L.; Wang, F. Origin of Pt site poisoning by impurities for oxygen reduction reaction catalysis: Tailored intrinsic activity of Pt sites. ACS Appl. Energy Mater. 2023, 6, 5700–5709.
Gong, L.; Zhu, J. W.; Xia, F. J.; Zhang, Y. H.; Shi, W. J.; Chen, L.; Yu, J.; Wu, J. S.; Mu, S. C. Marriage of ultralow platinum and single-atom MnN4 moiety for augmented ORR and HER catalysis. ACS Catal. 2023, 13, 4012–4020.
He, S. Q.; Liu, Y.; Zhan, H. B.; Guan, L. H. Direct thermal annealing synthesis of ordered Pt alloy nanoparticles coated with a thin N-doped carbon shell for the oxygen reduction reaction. ACS Catal. 2021, 11, 9355–9365.
Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.
Zhang, Q.; Asthagiri, A. Solvation effects on DFT predictions of ORR activity on metal surfaces. Catal. Today 2019, 323, 35–43.
Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A Chem. 1997, 115, 421–429.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Chen, Z. G.; Zhao, J.; Jin, C.; Liu, J. J. Butterfly effect of electron donor from monoatomic cobalt in few-atom platinum clusters: Boosting electrocatalysis. ACS Appl. Mater. Interfaces 2022, 14, 37727–37737.
Rodrigues, T. S.; da Silva, A. G. M.; Alves, R. S.; de Freitas, I. C.; Oliveira, D. C.; Camargo, P. H. C. Controlling reduction kinetics in the galvanic replacement involving metal oxides templates: Elucidating the formation of bimetallic bowls, rattles, and dendrites from Cu2O spheres. Part. Part. Syst. Charact. 2018, 35, 1700175.
Xie, C.; Chen, W.; Du, S. Q.; Yan, D. F.; Zhang, Y. Q.; Chen, J.; Liu, B.; Wang, S. Y. In-situ. phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy 2020, 71, 104653
Lei, Z. F.; Liu, X. J.; Wu, Y.; Wang, H.; Jiang, S. H.; Wang, S. D.; Hui, X. D.; Wu, Y. D.; Gault, B.; Kontis, P. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550.
Toe, C. Y.; Zheng, Z. K.; Wu, H.; Scott, J.; Amal, R.; Ng, Y. H. Photocorrosion of cuprous oxide in hydrogen production: Rationalising self-oxidation or self-reduction. Angew. Chem., Int. Ed. 2018, 57, 13613–13617.
Liu, J. J.; Xu, C. Z.; Liu, C. G.; Wang, F.; Liu, H. J.; Ji, J.; Li, Z. L. Impact of Cu-Pt nanotubes with a high degree of alloying on electro-catalytic activity toward oxygen reduction reaction. Electrochim. Acta 2015, 152, 425–432.
Zhao, Y. G.; Liu, J. J.; Liu, C. G.; Wang, F.; Song, Y. Amorphous CuPt alloy nanotubes induced by Na2S2O3 as efficient catalysts for the methanol oxidation reaction. ACS Catal. 2016, 6, 4127–4134.
Martini, A.; Signorile, M.; Negri, C.; Kvande, K.; Lomachenko, K. A.; Svelle, S.; Beato, P.; Berlier, G.; Borfecchia, E.; Bordiga, S. EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion. Phys. Chem. Chem. Phys. 2020, 22, 18950–18963.
Sushkevich, V. L.; Safonova, O. V.; Palagin, D.; Newton, M. A.; van Bokhoven, J. A. Structure of copper sites in zeolites examined by Fourier and wavelet transform analysis of EXAFS. Chem. Sci. 2020, 11, 5299–5312.
Xu, J. B.; Feng, K.; Chen, Y. F.; Zhong, J. Ternary metallic Cu x Co1– x Pt y O/RGO catalyst with internal synergistic effect for efficient hydrolysis of ammonia-borane. Appl. Surf. Sci. 2021, 537, 147823.
Chen, J. T.; Yiu, Y. M.; Wang, Z. Q.; Covelli, D.; Sammynaiken, R.; Finfrock, Y. Z.; Sham, T. K. Elucidating the many-body effect and anomalous Pt and Ni core level shifts in X-ray photoelectron spectroscopy of Pt-Ni alloys. J. Phys. Chem. C 2020, 124, 2313–2318.
Zhang, S. B.; Zhan, G. M.; Wang, X. B.; Cao, S. Y.; Yang, Q. F.; Yang, L. X.; Li, M.; Han, J. Y.; Zhu, X. L.; Wang, H. et al. Well-defined Co-Pt-OH as “electronic pump” on Co-LDH nanocages for enhanced oxygen evolution reaction. Appl. Catal. B Environ. 2020, 269, 118782.
Hsieh, Y. F.; Hsieh, Y. C.; Tseng, Y. C.; Wu, P. W.; Chao, C. G.; Lin, P.; Lee, J. F. Structural characterizations of Cu3Pt electrocatalyst featuring Pt-rich surface layers synthesized via mechanical alloying and selective dissolution routes. J. Alloys Compd. 2013, 552, 329–335.
Mao, Z. J.; Ding, C.; Liu, X.; Zhang, Q.; Qin, X. X.; Li, H.; Yang, F.; Li, Q.; Zhang, X. G.; Zhang, J. L. et al. Interstitial B-doping in Pt lattice to upgrade oxygen electroreduction performance. ACS Catal. 2022, 12, 8848–8856.
Lozovoi, A. Y.; Paxton, A. T. Boron in copper: A perfect misfit in the bulk and cohesion enhancer at a grain boundary. Phys. Rev. B 2008, 77, 165413.
Trinh, Q. T.; Banerjee, A.; Yang, Y. H.; Mushrif, S. H. Sub-surface boron-doped copper for methane activation and coupling: First-principles investigation of the structure, activity, and selectivity of the catalyst. J. Phys. Chem. C 2017, 121, 1099–1112.
Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.
Tu, W. Z.; Luo, W. J.; Chen, C. L.; Chen, K.; Zhu, E. B.; Zhao, Z. P.; Wang, Z. L.; Hu, T.; Zai, H. C.; Ke, X. X. et al. Tungsten as “Adhesive” in Pt2CuW0.25 ternary alloy for highly durable oxygen reduction electrocatalysis. Adv. Funct. Mater. 2020, 30, 1908230.
Jin, C.; Wang, Q. H.; Liu, J. J. Pb induced dislocation defects of PtCo systems: Strain-triggered oxygen reduction reaction for PEMFC. Nano Res. 2024, 17, 2462–2472.
Kondo, T.; Casolo, S.; Suzuki, T.; Shikano, T.; Sakurai, M.; Harada, Y.; Saito, M.; Oshima, M.; Trioni, M. I.; Tantardini, G. F. et al. Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms. Phys. Rev. B 2012, 86, 035436.
Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.
Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Cover picture: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure(Angew. Chem. Int. Ed. 18/2006). Angew. Chem., Int. Ed. 2006, 45, 2815.