The electrochemical CO2 reduction reaction (CO2RR) holds significant promise in advancing carbon neutrality. Developing catalysts for the electrochemical CO2RR to multi-carbon (C2+) products (e.g., C2H4) under industrial-level current density is urgently needed and pivotal. Herein, we report the Cu2O nanoparticles doped with interstitial carbon atoms (denoted as C-Cu2O NPs) for the conversion of CO2 to C2+ products. The interstitial carbon promotes the C-Cu2O NPs to possess abundant unsaturated Cu–O bonds, leading to a high-density Cuδ+ (0 < δ <1) species. The obtained C-Cu2O NPs exhibited significant Faradic efficiency (FE) of C2+ products approaching 76.9% and a partial current density reaching 615.2 mA·cm–2 under an industrial-level current density of 800 mA·cm–2. Furthermore, the efficient electrosynthesis of C2H4 achieved an FE of 57.4% with a partial current density of 459.2 mA·cm–2. In situ electrochemical attenuated total reflection Fourier transform infrared spectroscopy and in situ Raman spectroscopy analyses revealed that C-Cu2O NPs stabilized the intermediate *CO and facilitated C–C coupling, leading to increased selectivity towards C2+ products.
Lai, W. C.; Qiao, Y.; Zhang, J. W.; Lin, Z. Q.; Huang, H. W. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy Environ. Sci. 2022, 15, 3603–3629.
Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.
Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.
Liu, Y. M.; Wu, T. T.; Cheng, H. F.; Wu, J. W.; Guo, X. D.; Fan, H. J. Active plane modulation of Bi2O3 nanosheets via Zn substitution for efficient electrocatalytic CO2 reduction to formic acid. Nano Res. 2023, 16, 10803–10809.
Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.
Zhao, Z. H.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Highly efficient electroreduction of CO2 to ethanol via asymmetric C–C coupling by a metal-organic framework with heterodimetal dual sites. J. Am. Chem. Soc. 2023, 145, 26783–26790.
Li, J. C.; Kuang, Y.; Zhang, X.; Hung, W. H.; Chiang, C. Y.; Zhu, G. Z.; Chen, G.; Wang, F. F.; Liang, P.; Dai, H. J. Electrochemical acetate production from high-pressure gaseous and liquid CO2. Nat Catal. 2023, 6, 1151–1163.
Sun, R. B.; Wei, C.; Huang, Z. X.; Niu, S. W.; Han, X.; Chen, C.; Wang, H. R.; Song, J.; Yi, J. D.; Wu, G. et al. Cu2+1O/CuO x heterostructures promote the electrosynthesis of C2+ products from CO2. Nano Res. 2023, 16, 4698–4705.
Park, D. G.; Choi, J. W.; Chun, H.; Jang, H. S.; Lee, H.; Choi, W. H.; Moon, B. C.; Kim, K. H.; Kim, M. G.; Choi, K. M. et al. Increasing CO binding energy and defects by preserving Cu oxidation state via O2-plasma-assisted N doping on CuO enables high C2+ selectivity and long-term stability in electrochemical CO2 reduction. ACS Catal. 2023, 13, 9222–9233.
Zhao, Q.; Martirez, J. M. P.; Carter, E. A. Charting C–C coupling pathways in electrochemical CO2 reduction on Cu(111) using embedded correlated wavefunction theory. Proc. Natl. Acad. Sci. USA 2022, 119, e2202931119.
Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.
Kim, J. Y.; Ahn, H. S.; Kim, I.; Hong, D.; Lee, T.; Jo, J.; Kim, H.; Kwak, M. K.; Kim, H. G.; Kang, G. et al. Selective hydrocarbon or oxygenate production in CO2 electroreduction over metallurgical alloy catalysts. Nat. Synth. 2024, 3, 452–465.
Yan, C. L.; Luo, W.; Yuan, H. M.; Liu, G. Y.; Hao, R.; Qin, N.; Wang, Z. Q.; Liu, K.; Wang, Z. Y.; Cui, D. H. et al. Stabilizing intermediates and optimizing reaction processes with N doping in Cu2O for enhanced CO2 electroreduction. Appl. Catal. B Environ. 2022, 308, 121191.
Guo, W. W.; Tan, X. X.; Jia, S. H.; Liu, S. J.; Song, X. N.; Ma, X. D.; Wu, L. M.; Zheng, L. R.; Sun, X. F.; Han, B. X. Asymmetric Cu sites for enhanced CO2 electroreduction to C2+ products. CCS Chem. 2024, 6, 1231–1239.
Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.
Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.
Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.
Wang, C. W.; Zhang, H. N.; Wang, J. Y.; Zhao, Z.; Wang, J.; Zhang, Y.; Cheng, M.; Zhao, H. F.; Wang, J. Z. Atomic Fe embedded in carbon nanoshells-graphene nanomeshes with enhanced oxygen reduction reaction performance. Chem. Mater. 2017, 29, 9915–9922.
Wang, J.; Cheng, C.; Yuan, Q.; Yang, H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Cao, J. L.; Li, L. G.; Haw, S. C. et al. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem 2022, 8, 1673–1687.
Wang, J.; Yang, H.; Li, F.; Li, L. G.; Wu, J. B.; Liu, S. H.; Cheng, T.; Xu, Y.; Shao, Q.; Huang, X. Q. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 2022, 8, eabl9271.
Li, Y. H.; Ren, Z. T.; Gu, M. L.; Duan, Y. Y.; Zhang, W.; Lv, K. L. Synergistic effect of interstitial C doping and oxygen vacancies on the photoreactivity of TiO2 nanofibers towards CO2 reduction. Appl. Catal. B Environ. 2022, 317, 121773.
Tébar-Soler, C.; Martin-Diaconescu, V.; Simonelli, L.; Missyul, A.; Perez-Dieste, V.; Villar-García, I. J.; Brubach, J. B.; Roy, P.; Haro, M. L.; Calvino, J. J. et al. Low-oxidation-state Ru sites stabilized in carbon-doped RuO2 with low-temperature CO2 activation to yield methane. Nat. Mater. 2023, 22, 762–768.
Kim, J.; Choi, W.; Park, J. W.; Kim, C.; Kim, M.; Song, H. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 2019, 141, 6986–6994.
Li, H. F.; Liu, T. F.; Wei, P. F.; Lin, L.; Gao, D. F.; Wang, G. X.; Bao, X. H. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem., Int. Ed. 2021, 60, 14329–14333.
Wu, Q. Q.; Du, R. A.; Wang, P.; Waterhouse, G. I. N.; Li, J.; Qiu, Y. C.; Yan, K. Y.; Zhao, Y.; Zhao, W. W.; Tsai, H. J. et al. Nanograin-boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS Nano 2023, 17, 12884–12894.
Zang, Y. P.; Liu, T. F.; Wei, P. F.; Li, H. F.; Wang, Q.; Wang, G. X.; Bao, X. H. Selective CO2 electroreduction to ethanol over a carbon-coated CuO x catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209629.
Li, C. C.; Guo, Z. Y.; Liu, Z. L.; Zhang, T. T.; Shi, H. J.; Cui, J. L.; Zhu, M. H.; Zhang, L.; Li, H.; Li, H. H. et al. Boosting electrochemical CO2 reduction via surface hydroxylation over Cu-based electrocatalysts. ACS Catal. 2023, 13, 16114–16125.
Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.
Feng, J. Q.; Zhang, L. B.; Liu, S. J.; Xu, L.; Ma, X. D.; Tan, X. X.; Wu, L. M.; Qian, Q. L.; Wu, T. B.; Zhang, J. L. et al. Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products. Nat. Commun. 2023, 14, 4615.
Ren, D.; Gao, J.; Pan, L. F.; Wang, Z. W.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew. Chem., Int. Ed. 2019, 58, 15036–15040.
Li, P. S.; Bi, J. H.; Liu, J. Y.; Wang, Y.; Kang, X. C.; Sun, X. F.; Zhang, J. L.; Liu, Z. M.; Zhu, Q. G.; Han, B. X. p-d orbital hybridization induced by p-block metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction. J. Am. Chem. Soc. 2023, 145, 4675–4682.
Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.
Huo, H.; Wang, J.; Fan, Q. K.; Hu, Y. J.; Yang, J. Cu‐MOFs derived porous Cu nanoribbons with strengthened electric field for selective CO2 electroreduction to C2+ fuels. Adv. Energy Mater. 2021, 11, 2102447.
Niu, Z. Z.; Gao, F. Y.; Zhang, X. L.; Yang, P. P.; Liu, R.; Chi, L. P.; Wu, Z. Z.; Qin, S.; Yu, X. X.; Gao, M. R. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 2021, 143, 8011–8021.
Liu, W.; Zhai, P. B.; Li, A. W.; Wei, B.; Si, K. P.; Wei, Y.; Wang, X. G.; Zhu, G. D.; Chen, Q.; Gu, X. K. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877.
Deng, B. W.; Huang, M.; Li, K. L.; Zhao, X. L.; Geng, Q.; Chen, S.; Xie, H. T.; Dong, X. A.; Wang, H.; Dong, F. The crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O microparticles. Angew. Chem., Int. Ed. 2022, 61, e202114080.
Zhou, D. W.; Chen, C. J.; Zhang, Y. C.; Wang, M.; Han, S. T.; Dong, X.; Yao, T.; Jia, S. Q.; He, M. Y.; Wu, H. H. et al. Cooperation of different active sites to promote CO2 electroreduction to multi-carbon products at ampere-level. Angew. Chem., Int. Ed. 2024, 63, e202400439.