AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interstitial carbon induces enriched Cuδ + sites in Cu2O nanoparticles to facilitate CO2 electroreduction to C2+ products

Haoran Wang1,§Rongbo Sun2,§Peigen Liu3,§Haohui Hu1Chen Ling1Xiao Han1Yi Shi1Xusheng Zheng3Geng Wu1( )Xun Hong1( )
Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Sinochem Holdings Co Ltd, Xiongan New Area, Hebei 071700, China
National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China

§ Haoran Wang, Rongbo Sun, and Peigen Liu contributed equally to this work.

Show Author Information

Graphical Abstract

The interstitial carbon promotes the Cu2O nanoparticles (C-Cu2O NPs) to possess abundant unsaturated Cu–O bonds, leading to a high-density Cuδ+ (0< δ <1) species. The obtained C-Cu2O NPs exhibited significant Faradic efficiency of C2+ products approaching 76.9% and a partial current density reaching 615.2 mA·cm–2 under an industrial-level current density of 800 mA·cm–2.

Abstract

The electrochemical CO2 reduction reaction (CO2RR) holds significant promise in advancing carbon neutrality. Developing catalysts for the electrochemical CO2RR to multi-carbon (C2+) products (e.g., C2H4) under industrial-level current density is urgently needed and pivotal. Herein, we report the Cu2O nanoparticles doped with interstitial carbon atoms (denoted as C-Cu2O NPs) for the conversion of CO2 to C2+ products. The interstitial carbon promotes the C-Cu2O NPs to possess abundant unsaturated Cu–O bonds, leading to a high-density Cuδ+ (0 < δ <1) species. The obtained C-Cu2O NPs exhibited significant Faradic efficiency (FE) of C2+ products approaching 76.9% and a partial current density reaching 615.2 mA·cm–2 under an industrial-level current density of 800 mA·cm–2. Furthermore, the efficient electrosynthesis of C2H4 achieved an FE of 57.4% with a partial current density of 459.2 mA·cm–2. In situ electrochemical attenuated total reflection Fourier transform infrared spectroscopy and in situ Raman spectroscopy analyses revealed that C-Cu2O NPs stabilized the intermediate *CO and facilitated C–C coupling, leading to increased selectivity towards C2+ products.

Electronic Supplementary Material

Download File(s)
6731_ESM.pdf (3.9 MB)

References

[1]

Lai, W. C.; Qiao, Y.; Zhang, J. W.; Lin, Z. Q.; Huang, H. W. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy Environ. Sci. 2022, 15, 3603–3629.

[2]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[3]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[4]

Liu, Y. M.; Wu, T. T.; Cheng, H. F.; Wu, J. W.; Guo, X. D.; Fan, H. J. Active plane modulation of Bi2O3 nanosheets via Zn substitution for efficient electrocatalytic CO2 reduction to formic acid. Nano Res. 2023, 16, 10803–10809.

[5]

Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.

[6]

Zhao, Z. H.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Highly efficient electroreduction of CO2 to ethanol via asymmetric C–C coupling by a metal-organic framework with heterodimetal dual sites. J. Am. Chem. Soc. 2023, 145, 26783–26790.

[7]

Li, J. C.; Kuang, Y.; Zhang, X.; Hung, W. H.; Chiang, C. Y.; Zhu, G. Z.; Chen, G.; Wang, F. F.; Liang, P.; Dai, H. J. Electrochemical acetate production from high-pressure gaseous and liquid CO2. Nat Catal. 2023, 6, 1151–1163.

[8]

Sun, R. B.; Wei, C.; Huang, Z. X.; Niu, S. W.; Han, X.; Chen, C.; Wang, H. R.; Song, J.; Yi, J. D.; Wu, G. et al. Cu2+1O/CuO x heterostructures promote the electrosynthesis of C2+ products from CO2. Nano Res. 2023, 16, 4698–4705.

[9]

Park, D. G.; Choi, J. W.; Chun, H.; Jang, H. S.; Lee, H.; Choi, W. H.; Moon, B. C.; Kim, K. H.; Kim, M. G.; Choi, K. M. et al. Increasing CO binding energy and defects by preserving Cu oxidation state via O2-plasma-assisted N doping on CuO enables high C2+ selectivity and long-term stability in electrochemical CO2 reduction. ACS Catal. 2023, 13, 9222–9233.

[10]

Zhao, Q.; Martirez, J. M. P.; Carter, E. A. Charting C–C coupling pathways in electrochemical CO2 reduction on Cu(111) using embedded correlated wavefunction theory. Proc. Natl. Acad. Sci. USA 2022, 119, e2202931119.

[11]

Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.

[12]

Kim, J. Y.; Ahn, H. S.; Kim, I.; Hong, D.; Lee, T.; Jo, J.; Kim, H.; Kwak, M. K.; Kim, H. G.; Kang, G. et al. Selective hydrocarbon or oxygenate production in CO2 electroreduction over metallurgical alloy catalysts. Nat. Synth. 2024, 3, 452–465.

[13]

Yan, C. L.; Luo, W.; Yuan, H. M.; Liu, G. Y.; Hao, R.; Qin, N.; Wang, Z. Q.; Liu, K.; Wang, Z. Y.; Cui, D. H. et al. Stabilizing intermediates and optimizing reaction processes with N doping in Cu2O for enhanced CO2 electroreduction. Appl. Catal. B Environ. 2022, 308, 121191.

[14]

Guo, W. W.; Tan, X. X.; Jia, S. H.; Liu, S. J.; Song, X. N.; Ma, X. D.; Wu, L. M.; Zheng, L. R.; Sun, X. F.; Han, B. X. Asymmetric Cu sites for enhanced CO2 electroreduction to C2+ products. CCS Chem. 2024, 6, 1231–1239.

[15]

Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

[16]

Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

[17]

Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.

[18]

Wang, C. W.; Zhang, H. N.; Wang, J. Y.; Zhao, Z.; Wang, J.; Zhang, Y.; Cheng, M.; Zhao, H. F.; Wang, J. Z. Atomic Fe embedded in carbon nanoshells-graphene nanomeshes with enhanced oxygen reduction reaction performance. Chem. Mater. 2017, 29, 9915–9922.

[19]

Wang, J.; Cheng, C.; Yuan, Q.; Yang, H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Cao, J. L.; Li, L. G.; Haw, S. C. et al. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem 2022, 8, 1673–1687.

[20]

Wang, J.; Yang, H.; Li, F.; Li, L. G.; Wu, J. B.; Liu, S. H.; Cheng, T.; Xu, Y.; Shao, Q.; Huang, X. Q. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 2022, 8, eabl9271.

[21]

Li, Y. H.; Ren, Z. T.; Gu, M. L.; Duan, Y. Y.; Zhang, W.; Lv, K. L. Synergistic effect of interstitial C doping and oxygen vacancies on the photoreactivity of TiO2 nanofibers towards CO2 reduction. Appl. Catal. B Environ. 2022, 317, 121773.

[22]

Tébar-Soler, C.; Martin-Diaconescu, V.; Simonelli, L.; Missyul, A.; Perez-Dieste, V.; Villar-García, I. J.; Brubach, J. B.; Roy, P.; Haro, M. L.; Calvino, J. J. et al. Low-oxidation-state Ru sites stabilized in carbon-doped RuO2 with low-temperature CO2 activation to yield methane. Nat. Mater. 2023, 22, 762–768.

[23]
Wei, X. Q.; Li, Z. J.; Jang, H.; Wang, Z.; Zhao, X. H.; Chen, Y. F.; Wang, X. F.; Kim, M. G.; Liu, X. E.; Qin, Q. Synergistic effect of grain boundaries and oxygen vacancies on enhanced selectivity for electrocatalytic CO2 reduction. Small, in press, https://doi.org/10.1002/smll.202311136.
[24]

Kim, J.; Choi, W.; Park, J. W.; Kim, C.; Kim, M.; Song, H. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 2019, 141, 6986–6994.

[25]

Li, H. F.; Liu, T. F.; Wei, P. F.; Lin, L.; Gao, D. F.; Wang, G. X.; Bao, X. H. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem., Int. Ed. 2021, 60, 14329–14333.

[26]

Wu, Q. Q.; Du, R. A.; Wang, P.; Waterhouse, G. I. N.; Li, J.; Qiu, Y. C.; Yan, K. Y.; Zhao, Y.; Zhao, W. W.; Tsai, H. J. et al. Nanograin-boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS Nano 2023, 17, 12884–12894.

[27]

Zang, Y. P.; Liu, T. F.; Wei, P. F.; Li, H. F.; Wang, Q.; Wang, G. X.; Bao, X. H. Selective CO2 electroreduction to ethanol over a carbon-coated CuO x catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209629.

[28]

Li, C. C.; Guo, Z. Y.; Liu, Z. L.; Zhang, T. T.; Shi, H. J.; Cui, J. L.; Zhu, M. H.; Zhang, L.; Li, H.; Li, H. H. et al. Boosting electrochemical CO2 reduction via surface hydroxylation over Cu-based electrocatalysts. ACS Catal. 2023, 13, 16114–16125.

[29]

Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.

[30]

Feng, J. Q.; Zhang, L. B.; Liu, S. J.; Xu, L.; Ma, X. D.; Tan, X. X.; Wu, L. M.; Qian, Q. L.; Wu, T. B.; Zhang, J. L. et al. Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products. Nat. Commun. 2023, 14, 4615.

[31]

Ren, D.; Gao, J.; Pan, L. F.; Wang, Z. W.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew. Chem., Int. Ed. 2019, 58, 15036–15040.

[32]

Li, P. S.; Bi, J. H.; Liu, J. Y.; Wang, Y.; Kang, X. C.; Sun, X. F.; Zhang, J. L.; Liu, Z. M.; Zhu, Q. G.; Han, B. X. p-d orbital hybridization induced by p-block metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction. J. Am. Chem. Soc. 2023, 145, 4675–4682.

[33]

Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.

[34]

Huo, H.; Wang, J.; Fan, Q. K.; Hu, Y. J.; Yang, J. Cu‐MOFs derived porous Cu nanoribbons with strengthened electric field for selective CO2 electroreduction to C2+ fuels. Adv. Energy Mater. 2021, 11, 2102447.

[35]

Niu, Z. Z.; Gao, F. Y.; Zhang, X. L.; Yang, P. P.; Liu, R.; Chi, L. P.; Wu, Z. Z.; Qin, S.; Yu, X. X.; Gao, M. R. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 2021, 143, 8011–8021.

[36]

Liu, W.; Zhai, P. B.; Li, A. W.; Wei, B.; Si, K. P.; Wei, Y.; Wang, X. G.; Zhu, G. D.; Chen, Q.; Gu, X. K. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877.

[37]

Deng, B. W.; Huang, M.; Li, K. L.; Zhao, X. L.; Geng, Q.; Chen, S.; Xie, H. T.; Dong, X. A.; Wang, H.; Dong, F. The crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O microparticles. Angew. Chem., Int. Ed. 2022, 61, e202114080.

[38]

Zhou, D. W.; Chen, C. J.; Zhang, Y. C.; Wang, M.; Han, S. T.; Dong, X.; Yao, T.; Jia, S. Q.; He, M. Y.; Wu, H. H. et al. Cooperation of different active sites to promote CO2 electroreduction to multi-carbon products at ampere-level. Angew. Chem., Int. Ed. 2024, 63, e202400439.

Nano Research
Pages 7013-7019
Cite this article:
Wang H, Sun R, Liu P, et al. Interstitial carbon induces enriched Cuδ + sites in Cu2O nanoparticles to facilitate CO2 electroreduction to C2+ products. Nano Research, 2024, 17(8): 7013-7019. https://doi.org/10.1007/s12274-024-6731-1
Topics:

328

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 March 2024
Revised: 29 April 2024
Accepted: 29 April 2024
Published: 26 June 2024
© Tsinghua University Press 2024
Return