AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Overcoming side reaction effects in the colloidal synthesis of ZnSe/ZnS core/shell quantum dots with an etching strategy

Jinhua He1Chenhui Wang2( )Mingrui Liu1Muhammad Ramzan1Zhiwei Long1Xian-gang Wu1Yu Chen1Haizheng Zhong1( )
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Engineering Research Center for Mixed Reality and Advanced Display Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

The negative effects of the side reactions during the synthesis of large-size ZnSe quantum dots (QDs) were eliminated by using a modified etching strategy with myristic acid (MA) and potassium fluoride (KF) in combination. High-quality ZnSe/ZnS core/shell QDs with photoluminescence quantum yield (PLQY) up to 91% were obtained, and the pure-blue quantum dot light-emitting diode (QLED) with a maximum external quantum efficiency (EQE) of 4.2% was fabricated.

Abstract

The potential use of large-size ZnSe quantum dots as blue emitters for display applications has greatly inspired the colloidal synthesis. Herein, we report the negative effects of side reactions of large-size ZnSe quantum dots. The side reactions between oleic acid and oleylamine generated amidation products and H2O, which led to the hydrolysis of Zn(OA)2 to Zn(OH)2 and the subsequent formation of zinc oxide (ZnO) and zinc bis[diphenylphosphinate] (Zn(DPPA)2) precipitates. These side reactions resulted in the formation of a defective surface including a Se-rich surface and oxygen-related defects. Such negative effects can be overcome by adopting an etching strategy using potassium fluoride and myristic acid in combination. By overcoating a ZnS shell, blue emissive ZnSe/ZnS quantum dots with a maximum photoluminescence quantum yield of up to 91% were obtained. We further fabricated ZnSe quantum dots-based blue light-emitting diodes with an emission peak at 456 nm. The device showed a turn-on voltage of 2.7 V with a maximum external quantum efficiency of 4.2% and a maximum luminance of 1223 cd·m−2.

Electronic Supplementary Material

Download File(s)
6732_ESM.pdf (1.1 MB)

References

[1]

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

[2]

De Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[3]

Jang, E.; Jang, H. Review: Quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663–4692.

[4]
Kim, J.; Roh, J.; Park, M.; Lee, C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater., in press, DOI: 10.1002/adma.202212220.
[5]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[6]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[7]

Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun. 2023, 14, 284.

[8]

Gao, Y.; Li, B.; Liu, X. N.; Shen, H. B.; Song, Y.; Song, J. J.; Yan, Z. J.; Yan, X. H.; Chong, Y. H.; Yao, R. Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 2023, 18, 1168–1174.

[9]

Deng, X. Z.; Zhang, F. J.; Zhang, Y.; Shen, H. B. Heavy-metal-free blue-emitting ZnSe(Te) quantum dots: Synthesis and light-emitting applications. J. Mater. Chem. C 2023, 11, 14495–14514.

[10]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[11]

Chao, W. C.; Chiang, T. H.; Liu, Y. C.; Huang, Z. X.; Liao, C. C.; Chu, C. H.; Wang, C. H.; Tseng, H. W.; Hung, W. Y.; Chou, P. T. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2021, 2, 96.

[12]

Kim, K. H.; Jo, J. H.; Jo, D. Y.; Han, C. Y.; Yoon, S. Y.; Kim, Y.; Kim, Y. H.; Ko, Y. H.; Kim, S. W.; Lee, C. et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem. Mater. 2020, 32, 3537–3544.

[13]

Zhang, W. D.; Tan, Y. Z.; Duan, X. J.; Zhao, F. Q.; Liu, H. C.; Chen, W.; Liu, P.; Liu, X. G.; Wang, K.; Zhang, Z. K. et al. High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light-emitting diodes. Adv. Opt. Mater. 2022, 10, 2200685.

[14]

Jang, E. P.; Han, C. Y.; Lim, S. W.; Jo, J. H.; Jo, D. Y.; Lee, S. H.; Yoon, S. Y.; Yang, H. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 2019, 11, 46062–46069.

[15]

Han, C. Y.; Lee, S. H.; Song, S. W.; Yoon, S. Y.; Jo, J. H.; Jo, D. Y.; Kim, H. M.; Lee, B. J.; Kim, H. S.; Yang, H. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett. 2020, 5, 1568–1576.

[16]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[17]

Bi, Y. H.; Cao, S.; Yu, P.; Du, Z. T.; Wang, Y. J.; Zheng, J. J.; Zou, B. S.; Zhao, J. L. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 2023, 19, 2303247.

[18]
Cheng, C. Y.; Yu, B. B.; Huang, F.; Gao, L.; Cao, K. Q.; Zang, P. P.; Zheng, K. B.; Tian, J. J. Near-unity quantum yield ZnSeTe quantum dots enabled by controlling shell growth for efficient deep-blue light-emitting diodes. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202313811.
[19]

Kim, Y. H.; Yoon, S. Y.; Yang, H. Blue-emissive ZnSeTe quantum dots and their electroluminescent devices. J. Phys. Chem. Lett. 2024, 15, 2142–2151.

[20]

Yuan, C. X.; Tian, F. S.; Chen, S. M. ZnSeTe blue top-emitting QLEDs with color saturation near Rec.2020 standards and efficiency over 18.16%. Nano Res. 2023, 16, 5517–5524.

[21]

Cho, O.; Park, S.; Chang, H.; Kim, J.; Kim, J.; Kim, S.; Kim, T.; Kwak, J. Investigation of operation and degradation mechanisms in ZnTeSe blue quantum-dot light-emitting diodes by identifying recombination zone. Nano Res. 2024, 17, 6527–6533.

[22]

Long, Z. W.; Liu, M. R.; Wu, X. G.; Gu, K.; Yang, G. L.; Chen, Z.; Liu, Y.; Liu, R. H.; Zhong, H. Z. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth. 2023, 2, 296–304.

[23]

Long, Z. W.; Yang, G. L.; Shao, R. W.; Chen, Z.; Liu, Y.; Liu, R. H.; Zhong, H. Z. The strain effects and interfacial defects of large ZnSe/ZnS core/shell nanocrystals. Small 2024, 20, 2306602.

[24]

Lee, S. H.; Song, S. W.; Yoon, S. Y.; Jo, D. Y.; Kim, S. K.; Kim, H. M.; Kim, Y.; Park, S. M.; Yang, H. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chem. Eng. J. 2022, 429, 132464.

[25]

Min, J. J.; Zhang, Y.; Zhou, Y. M.; Xu, D. D.; Garoufalis, C. S.; Zeng, Z. P.; Shen, H. B.; Baskoutas, S.; Jia, Y.; Du, Z. L. Size engineering of trap effects in oxidized and hydroxylated ZnSe quantum dots. Nano Lett. 2022, 22, 3604–3611.

[26]

Zhang, J. K.; Li, J. Z.; Ye, Z. K.; Cui, J. T.; Peng, X. G. Hot-electron-induced photochemical properties of CdSe/ZnSe core/shell quantum dots under an ambient environment. J. Am. Chem. Soc. 2023, 145, 13938–13949.

[27]

Choi, Y.; Hahm, D.; Bae, W. K.; Lim, J. Heteroepitaxial chemistry of zinc chalcogenides on InP nanocrystals for defect-free interfaces with atomic uniformity. Nat. Commun. 2023, 14, 43.

[28]

Cros-Gagneux, A.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B. Surface chemistry of InP quantum dots: A comprehensive study. J. Am. Chem. Soc. 2010, 132, 18147–18157.

[29]

Talapin, D. V.; Gaponik, N.; Borchert, H.; Rogach, A. L.; Haase, M.; Weller, H. Etching of colloidal InP nanocrystals with fluorides: Photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B 2002, 106, 12659–12663.

[30]

Kim, T. G.; Zherebetskyy, D.; Bekenstein, Y.; Oh, M. H.; Wang, L. W.; Jang, E.; Alivisatos, A. P. Trap passivation in indium-based quantum dots through surface fluorination: Mechanism and applications. ACS Nano 2018, 12, 11529–11540.

[31]

Li, H. Y.; Zhang, W. J.; Bian, Y. Y.; Ahn, T. K.; Shen, H. B.; Ji, B. T. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett. 2022, 22, 4067–4073.

[32]

Lee, Y. J.; Kim, S.; Lee, J.; Cho, E.; Won, Y. H.; Kim, T.; Kim, D. Crystallographic and photophysical analysis on facet-controlled defect-free blue-emitting quantum dots. Adv. Mater. 2024, 36, 2311719.

[33]

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

[34]

Rowell, J. L.; Jia, Y. F.; Shi, Z. X.; Molina Villarino, A.; Kang, M.; Yoon, D.; Jiang, K. Z.; Abruña, H. D.; Muller, D. A.; Robinson, R. D. General route to colloidally stable, low-dispersity manganese-based ternary spinel oxide nanocrystals. J. Am. Chem. Soc. 2023, 145, 17406–17419.

[35]

Lanigan, R. M.; Sheppard, T. D. Recent developments in amide synthesis: Direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org. Chem. 2013, 2013, 7453–7465.

[36]

Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324.

[37]

Valtiner, M.; Borodinb, S.; Grundmeier, G. Preparation and characterisation of hydroxide stabilised ZnO(0001)–Zn–OH surfaces. Phys. Chem. Chem. Phys. 2007, 9, 2406–2412.

[38]

Lin, S. X.; Li, J. Z.; Pu, C. D.; Lei, H. R.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 2020, 13, 824–831.

[39]

Gao, Y.; Peng, X. G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J. Am. Chem. Soc. 2015, 137, 4230–4235.

[40]

Dai, M. Q.; Yung, L. Y. L. Ethylenediamine-assisted ligand exchange and phase transfer of oleophilic quantum dots: Stripping of original ligands and preservation of photoluminescence. Chem. Mater. 2013, 25, 2193–2201.

[41]

Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.

[42]

Zhang, J.; Zhang, H. B.; Cao, W. C.; Pang, Z. F.; Li, J. Z.; Shu, Y. F.; Zhu, C. Q.; Kong, X. Q.; Wang, L. J.; Peng, X. G. Identification of facet-dependent coordination structures of carboxylate ligands on CdSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 15675–15683.

[43]

Jin, W. X.; Deng, Y. Z.; Guo, B. B.; Lian, Y. X.; Zhao, B. D.; Di, D. W.; Sun, X. W.; Wang, K.; Chen, S. M.; Yang, Y. X. et al. On the accurate characterization of quantum-dot light-emitting diodes for display applications. npj Flex. Electron. 2022, 6, 35.

Nano Research
Pages 7020-7026
Cite this article:
He J, Wang C, Liu M, et al. Overcoming side reaction effects in the colloidal synthesis of ZnSe/ZnS core/shell quantum dots with an etching strategy. Nano Research, 2024, 17(8): 7020-7026. https://doi.org/10.1007/s12274-024-6732-0
Topics:

640

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 March 2024
Revised: 24 April 2024
Accepted: 28 April 2024
Published: 28 May 2024
© Tsinghua University Press 2024
Return