AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nitrogen and fluorine co-doped graphene for ultra-stable lithium metal anodes

Pan Li1Yifan Liu1Xujian Bao1Jinghao Xie1Zhao Li1Hongcheng Li1Qiang Ren1Xiaomiao Feng1( )Yue Hu2( )Yanwen Ma1( )
State Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
Show Author Information

Graphical Abstract

The co-doped graphene is used as a novel Li host which utilize the synergetic effect of nitrogen and fluorine doping to render fast formation of robust solid electrolyte interface (SEI), as well as smooth and efficient Li plating/stripping.

Abstract

The heteroatom doping strategies have been utilized to effectively improve the performance of the carbon-based hosts, such as graphene, for lithium (Li) metal in high energy density lithium metal batteries. However, solely doped graphene hosts often need the assistance of other materials with either better lithiophilicity or electronic conductance to achieve smooth and efficient deposition of Li, which adds extra weight or volume. Herein, graphene co-doped by nitrogen and fluorine (NFG) is employed as a stable host for Li, where the N-doping provides lithiophilicity and electronic conductivity lacked by F-doping and the F-doping facilitates fast formation of solid electrolyte interphase (SEI) retarded by N-doping. The well regulation of Li plating/stripping and SEI formation is verified by quickly stabilized and small-magnitude voltage hysteresis, which stands out in Li hosts based on doped graphene and leads to excellent long-term cycling performance of NFG based electrodes. A voltage hysteresis of 20 mV is observed for more than 850 h in the symmetrical cell. The remarkable efficiency of lithium usage is confirmed by the high-capacity retention of a full cell paired with LiFePO4 (LFP), which exceeds 70% after 500 cycles. This work presents an innovative perspective on the control of Li plating/stripping by simultaneously introducing two kinds of dopants into graphene and paving the way for exploring practical Li metal batteries.

Electronic Supplementary Material

Download File(s)
6733_ESM.pdf (4.4 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Amine, K.; Kanno, R.; Tzeng, Y. Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bull. 2014, 39, 395–401.

[3]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[4]

Li, X.; Sun, X. H.; Hu, X. D.; Fan, F. R.; Cai, S.; Zheng, C. M.; Stucky, G. D. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 2020, 77, 105143.

[5]

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

[6]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[7]

Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 2019, 4, 664–670.

[8]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[9]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[10]

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

[11]

Grande, L.; Paillard, E.; Hassoun, J.; Park, J. B.; Lee, Y. J.; Sun, Y. K.; Passerini, S.; Scrosati, B. The lithium/air battery: Still an emerging system or a practical reality. Adv. Mater. 2015, 27, 784–800.

[12]

Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Towards better Li metal anodes: Challenges and strategies. Mater. Today 2020, 33, 56–74.

[13]

Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.

[14]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[15]

Huang, F. Y.; Wang, S.; Jie, Y. L.; Hansen, E.; Wang, S. Y.; Lei, Z. W.; Liu, J.; Cao, R. G.; Zhang, G. Q.; Jiao, S. H. Deciphering pitting behavior of lithium metal anodes in lithium sulfur batteries. J. Energy Chem. 2020, 49, 257–261.

[16]

Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

[17]

Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1, 317–344.

[18]

Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1402273.

[19]

Ma, Q.; Fu, S.; Wu, A. J.; Deng, Q.; Li, W. D.; Yue, D.; Zhang, B.; Wu, X. W.; Wang, Z. L.; Guo, Y. G. Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries. Adv. Energy Mater. 2023, 13, 2203892.

[20]

Kim, M. S.; Zhang, Z. W.; Rudnicki, P. E.; Yu, Z. A.; Wang, J. Y.; Wang, H. S.; Oyakhire, S. T.; Chen, Y. L.; Kim, S. C.; Zhang, W. B. et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 2022, 21, 445–454.

[21]

Zhao, F. F.; Zhai, P. B.; Wei, Y.; Yang, Z. L.; Chen, Q.; Zuo, J. H.; Gu, X. K.; Gong, Y. J. Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes. Adv. Sci. 2022, 9, 2103930.

[22]

Sun, J. R.; Zhang, S.; Li, J. D.; Xie, B.; Ma, J.; Dong, S. M.; Cui, G. L. Robust transport: An artificial solid electrolyte interphase design for anode free lithium metal battery. Adv. Mater. 2023, 35, 2209404.

[23]

Fan, L. S.; Sun, B.; Yan, K.; Xiong, P.; Guo, X.; Guo, Z. K.; Zhang, N. Q.; Feng, Y. J.; Sun, K. N.; Wang, G. X. A dual-protective artificial interface for stable lithium metal anodes. Adv. Energy Mater. 2021, 11, 2102242.

[24]

Yao, S. Y.; Yang, Y.; Liang, Z. W.; Chen, J. H.; Ding, J. Y.; Li, F. K.; Liu, J. H.; Xi, L.; Zhu, M.; Liu, J. A dual-functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 2023, 2212466.

[25]

Zhao, Q. N.; Wang, R. H.; Hu, X. L.; Wang, Y. M.; Lu, G. J.; Yang, Z. G.; Liu, Q. W.; Yang, X. K.; Pan, F. S.; Xu, C. H. Functionalized 12 µm polyethylene separator to realize dendrite-free lithium deposition toward highly stable lithium-metal batteries. Adv. Sci. 2022, 9, 2102215.

[26]

Seo, J. Y.; Lee, Y. H.; Kim, J. H.; Hong, Y. K.; Chen, W. S.; Lee, Y. G.; Lee, S. Y. Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Energy Storage Mater. 2022, 50, 783–791.

[27]

Zhang, X. J.; Ma, F.; Srinivas, K.; Yu, B.; Chen, X.; Wang, B.; Wang, X. Q.; Liu, D. W.; Zhang, Z. H.; He, J. R. et al. Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 2022, 45, 656–666.

[28]

Li, Z. H.; Li, X. L.; Zhou, L.; Xiao, Z. C.; Zhou, S. K.; Zhang, X. H.; Li, L. D.; Zhi, L. J. A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy 2018, 49, 179–185.

[29]

Hu, Z. L.; Li, Z. Z.; Xia, Z.; Jiang, T.; Wang, G. L.; Sun, J. Y.; Sun, P. F.; Yan, C. L.; Zhang, L. PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Mater. 2019, 22, 29–39.

[30]

Li, T.; Gu, S. C.; Chen, L. K.; Zhang, L. H.; Qin, X. Y.; Huang, Z. J.; He, Y. B.; Lv, W.; Kang, F. Y. Bidirectional lithiophilic gradients modification of ultralight 3D carbon nanofiber host for stable lithium metal anode. Small 2022, 18, 2203273.

[31]

Chen, J. Y.; Zhao, J.; Lei, L. N.; Li, P.; Chen, J.; Zhang, Y.; Wang, Y. Z.; Ma, Y. W.; Wang, D. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes. Nano Lett. 2020, 20, 3403–3410.

[32]

Li, P.; Xu, L.; Xiong, F.; Zheng, Z. H.; Bao, X. J.; Ren, Q.; Liu, Y. F.; Hu, Y.; Ma, Y. W. A surface-nitridized 3D nickel host for lithium metal anodes with long cycling life at a high rate. Nanoscale 2022, 14, 3480–3486.

[33]

Jeong, J.; Chun, J.; Lim, W. G.; Kim, W. B.; Jo, C.; Lee, J. Mesoporous carbon host material for stable lithium metal anode. Nanoscale 2020, 12, 11818–11824.

[34]

Park, S.; Jin, H. J.; Yun, Y. S. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv. Mater. 2020, 32, 2002193.

[35]

Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

[36]

Zhao, J.; Zhou, G. M.; Yan, K.; Xie, J.; Li, Y. Z.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J. Y. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 2017, 12, 993–999.

[37]

Sun, C. B.; Feng, Y. Y.; Li, Y.; Qin, C. Q.; Zhang, Q. Q.; Feng, W. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 2014, 6, 2634–2641.

[38]

Ma, T.; Su, T. Y.; Zhang, L.; Yang, J. W.; Yao, H. B.; Lu, L. L.; Liu, Y. F.; He, C. X.; Yu, S. H. Scallion-inspired graphene scaffold enabled high rate lithium metal battery. Nano Lett. 2021, 21, 2347–2355.

[39]

Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011, 11, 2472–2477.

[40]

Zhu, J. Q.; Cai, D.; Li, J. R.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. In- situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Mater. 2022, 49, 546–554.

[41]

Shin, W. K.; Kannan, A. G.; Kim, D. W. Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces 2015, 7, 23700–23707.

[42]

Liu, W.; Zhai, P. B.; Qin, S. J.; Xiao, J.; Wei, Y.; Yang, W. W.; Cui, S. Q.; Chen, Q.; Jin, C. Q.; Yang, S. B. et al. Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth. J. Energy Chem. 2021, 56, 463–469.

[43]

Huang, S. Z.; Li, Y.; Feng, Y. Y.; An, H. R.; Long, P.; Qin, C. Q.; Feng, W. Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 23095–23105.

[44]

Liu, Y. H.; He, C.; Bi, J. X.; Li, S. Y.; Du, H. F.; Du, Z. Z.; Guan, W. Q.; Ai, W. High-areal capacity, high-rate lithium metal anodes enabled by nitrogen-doped graphene mesh. Small 2024, 20, 2305964.

[45]

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

[46]

Jamaluddin, A.; Sin, Y. Y.; Adhitama, E.; Prayogi, A.; Wu, Y. T.; Chang, J. K.; Su, C. Y. Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries. Carbon 2022, 197, 141–151.

[47]

Fan, L.; Zhuang, H. L.; Gao, L. N.; Lu, Y. Y.; Archer, L. A. Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A 2017, 5, 3483–3492.

[48]

Park, K.; Kim, S.; Baek, M.; Chang, B.; Lee, T.; Choi, J. W. Synergistic effect of crosslinked organic–inorganic composite protective layer for high performance lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2300980.

[49]

Xu, J. Y.; Yu, J. S.; Liao, J. H.; Yang, X. B.; Wu, C. Y.; Wang, Y.; Wang, L.; Xie, C.; Luo, L. B. Opening the band gap of graphene via fluorination for high-performance dual-mode photodetector application. ACS Appl. Mater. Interfaces 2019, 11, 21702–21710.

[50]

Hou, J.; Cao, F.; Xu, H.; Fu, J. N.; Ali, R.; Liu, Y. F.; Jian, X. Constructing carbon-decorated CF x nanocapsule by atomic layer deposition and catalytic chemical vapor deposition for high-capacity lithium primary battery. Appl. Surf. Sci. 2022, 596, 153570.

[51]

Zhu, D. L.; Yuan, J. C.; Dai, Y.; Peng, Y. Q.; Li, W. R.; Zhang, F. Z.; Li, A. J.; Zhang, J. J. High-rate performance of fluorinated carbon material doped by phosphorus species for lithium-fluorinated carbon battery. Energy Technol. 2022, 10, 2200155.

[52]

Ma, X. L.; Ning, G. Q.; Sun, Y. Z.; Pu, Y. J.; Gao, J. S. High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 2014, 79, 310–320.

[53]

Xu, Z. X.; Xu, L. Y.; Xu, Z. X.; Deng, Z. P.; Wang, X. L. N, O-codoped carbon nanosheet array enabling stable lithium metal anode. Adv. Funct. Mater. 2021, 31, 2102354.

[54]

Gao, C. H.; Li, J.; Sun, K. N.; Li, H. X.; Hong, B.; Bai, M. H.; Zhang, K.; Zhang, Z. A.; Lai, Y. Q. Controllable lithium deposition behavior hollow of N, O co-doped carbon nanospheres for practical lithium metal batteries. Chem. Eng. J. 2021, 412, 128721.

[55]

Shan, Q.; Fang, Y. N.; Tian, X. Y.; Yang, L.; Li, P.; Feng, X. M. Interconnected 3D fluorinated graphene host enables an ultrastable lithium metal anode. New J. Chem. 2022, 46, 8981–8990.

[56]

Wang, Z. F.; Wang, J. Q.; Li, Z. P.; Gong, P. W.; Liu, X. H.; Zhang, L. B.; Ren, J. F.; Wang, H. G.; Yang, S. R. Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 2012, 50, 5403–5410.

[57]

Loh, K. P.; Bao, Q. L.; Ang, P. K.; Yang, J. X. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.

[58]

Zhou, Y.; Bao, Q. L.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956.

[59]

Mamaril, G. S. S.; de Luna, M. D. G.; Bindumadhavan, K.; Ong, D. C.; Pimentel, J. A. I.; Doong, R. A. Nitrogen and fluorine co-doped 3-dimensional reduced graphene oxide architectures as high-performance electrode material for capacitive deionization of copper ions. Sep. Purif. Technol. 2021, 272, 117559.

[60]

Kaniyoor, A.; Baby, T. T.; Ramaprabhu, S. Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J. Mater. Chem. 2010, 20, 8467–8469.

[61]

Yan, P. T.; Yan, L.; Gao, J. J.; Zhang, Z.; Gong, G.; Hou, M. L. Nitrogen and fluorine co-doped graphene hydrogel for high-performance supercapacitors. Ionics 2020, 26, 4705–4712.

[62]

Xu, H. F.; Ma, L. B.; Jin, Z. Nitrogen-doped graphene: Synthesis, characterizations and energy applications. J. Energy Chem. 2018, 27, 146–160.

[63]

Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681.

[64]

Zhao, L. F.; Wang, W. H.; Zhao, X. X.; Hou, Z.; Fan, X. K.; Liu, Y. L.; Quan, Z. W. Ni3N nanocrystals decorated reduced graphene oxide with high ionic conductivity for stable lithium metal anode. ACS Appl. Energy Mater. 2019, 2, 2692–2698.

[65]

Kim, Y. H.; Lee, G. W.; Choi, Y. J.; Choi, H. S.; Kim, K. B. Mechanically resilient graphene assembly microspheres with interlocked N-doped graphene nanostructures grown in situ for highly stable lithium metal anodes. Adv. Funct. Mater. 2022, 32, 2113316.

Nano Research
Pages 7212-7220
Cite this article:
Li P, Liu Y, Bao X, et al. Nitrogen and fluorine co-doped graphene for ultra-stable lithium metal anodes. Nano Research, 2024, 17(8): 7212-7220. https://doi.org/10.1007/s12274-024-6733-z
Topics:

449

Views

2

Crossref

0

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 27 March 2024
Revised: 28 April 2024
Accepted: 28 April 2024
Published: 15 June 2024
© Tsinghua University Press 2024
Return