AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A single atom photocatalyst co-doped with potassium and gallium for enhancing photocatalytic hydrogen peroxide synthesis

Wenan Cai1Yuichiro Tanaka1Xing Zhu2( )Teruhisa Ohno1( )
Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
Show Author Information

Graphical Abstract

K ions and Ga-N sites promote charge carrier separation and transfer. The target catalyst Ga10-K3 exhibited superior oxygen reduction reaction (ORR) activities in the visible light.

Abstract

Polymer carbon nitride (PCN) is widely used in photocatalysis. However, pristine PCN has disadvantages such as insufficient visible light absorption and low photogenerated carrier separation efficiency that greatly limited the photocatalytic efficiency. As a non-toxic metal, gallium has the potential to solve the defects of PCN. Gallium ions coordinated with nitrogen in carbon nitride to form Ga-N active sites and improved the photocatalytic activity. The doped potassium ions form a transmission channel for charge redistribution and transfer between adjacent layers, which is beneficial for better separation of photoexcited carriers. In this study, a series of PCN co-doped with gallium and potassium (Ga-K-PCN) were prepared. The experimental results indicated photocatalytic generation of hydrogen peroxide proceeds through the 2e oxygen reduction reaction pathway. Notably, Nyquist plots and photocurrent results further proved that the presence of Ga-N sites and potassium ion doping could significantly improve the separation/transfer of intra-planar and interlayer charge carriers and thus enhance photocatalytic efficiency. The Ga10-K3-PCN photocatalysts promoted yield of H2O2, with reactivity at 28.2 μmol/(g·h) and solar-to-chemical conversion efficiency at 0.64%, surpassed that of a typical photo-catalyst based on PCN (0.18%).

Electronic Supplementary Material

Download File(s)
6736_ESM.pdf (5.3 MB)

References

[1]

An, L.; Zhao, T. S.; Zeng, L.; Yan, X. H. Performance of an alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant. Int. J. Hydrogen Energy 2014, 39, 2320–2324.

[2]

Goor, G. Hydrogen peroxide: Manufacture and industrial use for production of organic chemicals. In Catalytic Oxidations with Hydrogen Peroxide as Oxidant; Strukul, G., Ed., Springer: Dordrecht, 1992; pp 13–43

[3]

Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M. C.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475–484.

[4]

Zhao, Y. J.; Liu, Y.; Cao, J. J.; Wang, H.; Shao, M. W.; Huang, H.; Liu, Y.; Kang, Z. H. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Appl. Catal. B: Environ. 2020, 278, 119289.

[5]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

[6]

Bai, X. J.; Sun, C. P.; Wu, S. L.; Zhu, Y. F. Enhancement of photocatalytic performance via a P3HT-g-C3N4 heterojunction. J. Mater. Chem. A 2015, 3, 2741–2747.

[7]

Hu, S. Z.; Qu, X. Y.; Li, P.; Wang, F.; Li, Q.; Song, L. J.; Zhao, Y. F.; Kang, X. X. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites. Chem. Eng. J. 2018, 334, 410–418.

[8]

Luo, J.; Liu, Y. N.; Fan, C. Z.; Tang, L.; Yang, S. J.; Liu, M. L.; Wang, M. E.; Feng, C. Y.; Ouyang, X. L.; Wang, L. L. et al. Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal. 2021, 11, 11440–11450.

[9]

Shiraishi, Y.; Kofuji, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 2015, 5, 3058–3066.

[10]

Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.

[11]

Jiang, J.; Cao, S. W.; Hu, C. L.; Chen, C. H. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chin. J. Catal. 2017, 38, 1981–1989.

[12]

Wang, S. H.; Zhan, J. W.; Chen, K.; Ali, A.; Zeng, L. H.; Zhao, H.; Hu, W. L.; Zhu, L. X.; Xu, X. L. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction. ACS Sustain. Chem. Eng. 2020, 8, 8214–8222.

[13]

Qiu, C. T.; Xu, Y. S.; Fan, X.; Xu, D.; Tandiana, R.; Ling, X.; Jiang, Y. N.; Liu, C. B.; Yu, L.; Chen, W. et al. Highly crystalline K-intercalated polymeric carbon nitride for visible-light photocatalytic alkenes and alkynes deuterations. Adv. Sci. 2019, 6, 1801403.

[14]

Arai, N.; Saito, N.; Nishiyama, H.; Inoue, Y.; Domen, K.; Sato, K. Overall water splitting by RuO2-dispersed divalent-ion-doped GaN photocatalysts with d10 electronic configuration. Chem. Lett. 2006, 35, 796–797.

[15]

Arai, N.; Saito, N.; Nishiyama, H.; Domen, K.; Kobayashi, H.; Sato, K.; Inoue, Y. Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting. Catal. Today 2007, 129, 407–413.

[16]
Nosaka, Y.; Nosaka, A. Introduction to Photocatalysis: From Basic Science to Applications; Royal Society of Chemistry: Cambridge, 2016.
[17]

Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2009, 2, 364–386.

[18]

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

[19]

Teng, Z. Y.; Cai, W.; Sim, W.; Zhang, Q. T.; Wang, C. Y.; Su, C. L.; Ohno, T. Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Appl. Catal. B: Environ. 2021, 282, 119589.

[20]

Núñez, J.; Fresno, F.; Platero-Prats, A. E.; Jana, P.; Fierro, J. L. G.; Coronado, J. M.; Serrano, D. P.; de la Peña O'Shea, V. A. Ga-promoted photocatalytic H2 production over Pt/ZnO nanostructures. ACS Appl. Mater. Interfaces 2016, 8, 23729–23738.

[21]

Yu, X. L.; An, X. Q.; Shavel, A.; Ibáñez, M.; Cabot, A. The effect of the Ga content on the photocatalytic hydrogen evolution of CuIn1– x Ga x S2 nanocrystals. J. Mater. Chem. A 2014, 2, 12317–12322.

[22]

Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem., Int. Ed. 2021, 60, 6124–6129.

[23]

Xiong, T.; Cen, W. L.; Zhang, Y. X.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.

[24]

Teng, Z. Y.; Cai, W.; Sim, W.; Zhang, Q. T.; Wang, C. Y.; Su, C. L.; Ohno, T. Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Appl. Catal. B: Environ. 2021, 282, 119589.

[25]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[26]

Watanabe, E.; Ushiyama, H.; Yamashita, K. Theoretical studies on the mechanism of oxygen reduction reaction on clean and O-substituted Ta3N5(100) surfaces. Catal. Sci. Technol. 2015, 5, 2769–2776.

[27]

Hong, J. H.; Ma, R.; Wu, Y. C.; Wen, T.; Ai, Y. J. CoN x /g-C3N4 Nanomaterials preparation by MOFs self-sacrificing template method for efficient photocatalytic reduction of U(VI). J. Inorg. Mater. 2022, 37, 741–749.

[28]

Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

[29]

Xia, Y.; Sayed, M.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Single-atom heterogeneous photocatalysts. Chem Catal. 2021, 1, 1173–1214.

[30]

Teng, Z. Y.; Cai, W.; Liu, S. X.; Wang, C. Y.; Zhang, Q. T.; Su, C. L.; Ohno, T. Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Appl. Catal. B: Environ. 2020, 271, 118917.

[31]

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

[32]

Dong, F.; Li, Y. H.; Wang, Z. Y.; Ho, W. K. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl. Surf. Sci. 2015, 358, 393–403.

[33]

Lin, X.; Du, S. W.; Li, C. H.; Li, G. J.; Li, Y. J.; Chen, F. T.; Fang, P. F. Consciously constructing the robust NiS/g-C3N4 hybrids for enhanced photocatalytic hydrogen evolution. Catal. Lett. 2020, 150, 1898–1908.

[34]

Duan, L. Y.; Lu, S. S.; Duan, F.; Chen, M. Q. Preparation and photocatalytic activity of Co3O4/g-C3N4 composite photocatalysts via one-pot synthesis. Chin. J. Inorg. Chem. 2019, 35, 793–802.

[35]

Jones, R. D.; Summerville, D. A.; Basolo, F. Synthetic oxygen carriers related to biological systems. Chem. Rev. 1979, 79, 139–179.

[36]

Wagner, C. D. Chemical shifts of Auger lines, and the Auger parameter. Faraday Discuss. Chem. Soc. 1975, 60, 291–300.

[37]

Schlomberg, H.; Kröger, J.; Savasci, G.; Terban, M. W.; Bette, S.; Moudrakovski, I.; Duppel, V.; Podjaski, F.; Siegel, R.; Senker, J. et al. Structural insights into poly(heptazine imides): A light-storing carbon nitride material for dark photocatalysis. Chem. Mater. 2019, 31, 7478–7486.

[38]

Lau, V. W. H.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165.

[39]

Schwarzer, A.; Saplinova, T.; Kroke, E. Tri- s-triazines ( s-heptazines)-From a "mystery molecule" to industrially relevant carbon nitride materials. Coord. Chem. Rev. 2013, 257, 2032–2062.

[40]

Makowski, S. J.; Schwarze, A.; Schmidt, P. J.; Schnick, W. Rare-earth melonates LnC6N7(NCN)3· xH2O (Ln = La, Ce, Pr, Nd, Sm, Eu, Tb; x = 8–12): Synthesis, crystal structures, thermal behavior, and photoluminescence properties of heptazine salts with trivalent cations. Eur. J. Inorg. Chem. 2012, 2012, 1832–1839.

[41]

Chen, X.; Hu, R. DFT-based study of single transition metal atom doped g-C3N4 as alternative oxygen reduction reaction catalysts. Int. J. Hydrogen Energy 2019, 44, 15409–15416.

[42]

Wang, X. H.; He, M. L.; Nan, Z. D. Effects of adsorption capacity and activity site on Fenton-like catalytic performance for Na and Fe co-doped g-C3N4. Sep. Purif. Technol. 2021, 256, 117765.

[43]

Kessler, F. K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X. C.; Bojdys, M. J. Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2017, 2, 17030.

[44]

Banerjee, T.; Podjaski, F.; Kröger, J.; Biswal, B. P.; Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 2021, 6, 168–190.

[45]

Lin, L. H.; Yu, Z. Y.; Wang, X. C. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 131, 6225–6236.

[46]

Hou, W. C.; Wang, Y. S. Photocatalytic generation of H2O2 by graphene oxide in organic electron donor-free condition under sunlight. ACS Sustain. Chem. Eng. 2017, 5, 2994–3001.

[47]

Jian, L.; Dong, Y. M.; Zhao, H.; Pan, C. S.; Wang, G. L.; Zhu, Y. F. Highly crystalline carbon nitrogen polymer with a strong built-in electric fields for ultra-high photocatalytic H2O2 production. Appl. Catal. B: Environ. 2024, 342, 123340.

[48]

Kofuji, Y.; Ohkita, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Mellitic triimide-doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production. ACS Sustain. Chem. Eng. 2017, 5, 6478–6485.

[49]

Wang, Y. Y.; Zhao, S.; Zhang, Y. W.; Fang, J. S.; Zhou, Y. M.; Yuan, S. H.; Zhang, C.; Chen, W. X. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 2018, 440, 258–265.

[50]

Zhang, Q. T.; Yuan, S. S.; Xu, B.; Xu, Y. S.; Cao, K. H.; Jin, Z. Y.; Qiu, C. T.; Zhang, M.; Su, C. L.; Ohno, T. A facile approach to build Bi2O2CO3/PCN nanohybrid photocatalysts for gaseous acetaldehyde efficient removal. Catal. Today 2018, 315, 184–193.

[51]

Bai, Y. Q.; Hu, Z. C.; Jiang, J. X.; Huang, F. Hydrophilic conjugated materials for photocatalytic hydrogen evolution. Chem.—Asian J. 2020, 15, 1780–1790.

[52]

Yang, J.; Acharjya, A.; Ye, M. Y.; Rabeah, J.; Li, S.; Kochovski, Z.; Youk, S.; Roeser, J.; Grüneberg, J.; Penschke, C. et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19797–19803.

[53]

Sachs, M.; Sprick, R. S.; Pearce, D.; Hillman, S. A. J.; Monti, A.; Guilbert, A. A. Y.; Brownbill, N. J.; Dimitrov, S.; Shi, X. Y.; Blanc, F. et al. Understanding structure–activity relationships in linear polymer photocatalysts for hydrogen evolution. Nat. Commun. 2018, 9, 4968.

[54]

Jung, O.; Pegis, M. L.; Wang, Z. X.; Banerjee, G.; Nemes, C. T.; Hoffeditz, W. L.; Hupp, J. T.; Schmuttenmaer, C. A.; Brudvig, G. W.; Mayer, J. M. Highly active NiO photocathodes for H2O2 production enabled via outer-sphere electron transfer. J. Am. Chem. Soc. 2018, 140, 4079–4084.

[55]

Chu, Y. Y.; Zheng, X. L.; Fan, J. R. Preparation of sodium and boron co-doped graphitic carbon nitride for the enhanced production of H2O2 via two-electron oxygen reduction and the degradation of 2,4-DCP via photocatalytic oxidation coupled with Fenton oxidation. Chem. Eng. J. 2022, 431, 134020.

[56]

Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem., Int. Ed. 2014, 53, 13454–13459.

Nano Research
Pages 7027-7038
Cite this article:
Cai W, Tanaka Y, Zhu X, et al. A single atom photocatalyst co-doped with potassium and gallium for enhancing photocatalytic hydrogen peroxide synthesis. Nano Research, 2024, 17(8): 7027-7038. https://doi.org/10.1007/s12274-024-6736-9
Topics:

510

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 February 2024
Revised: 17 April 2024
Accepted: 06 May 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return