AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selective deposition of a MOF at the spikes of Au nanostars for SERS detection

Yi Liu1,2Ka Kit Chui2Xinyue Xia2Han Zhang3Xiaolu Zhuo1( )Jianfang Wang2( )
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China
Show Author Information

Graphical Abstract

Plasmon-coupled nanogaps with large electromagnetic field enhancement are integrated with metal-organic frameworks (MOFs) of molecular enrichment functions for surface-enhanced Raman spectroscopy-based detection. The integration is achieved through selective deposition of MOFs at the tips of gold nanostars.

Abstract

In the pursuit of advancing molecular sensing through surface-enhanced Raman spectroscopy (SERS), the combination of plasmonic nanoparticles and metal-organic frameworks (MOFs) has emerged as a highly effective approach to enhance the sensitivity and selectivity of SERS substrates. However, most prior investigations have predominantly focused on MOF-coated plasmonic nanoparticles in core@shell or layer-by-layer configurations, leaving a notable knowledge gap in exploring alternative configurations. Herein we present a facile method to construct a particle-on-mirror architecture by selectively coating a MOF, zeolitic imidazolate framework-8 (ZIF-8), onto the tips of Au nanostars and subsequently depositing the resultant nanoparticles onto a Au film. This design integrates the electric field enhancement at the sharp tips and nanogaps, along with the molecular enrichment function within the porous MOF immobilized at the tips and nanogaps, leading to a substantial boost in the SERS signal intensity. Such a unique SERS platform enables consistent and outstanding SERS performance for analytes of different sizes. This work opens up a promising strategy for constructing multifunctional nanostructures for sensitive SERS detection in real-life scenarios.

Electronic Supplementary Material

Download File(s)
6737_ESM.pdf (2.9 MB)

References

[1]

Han, X. X.; Rodriguez, R. S.; Haynes, C. L.; Ozaki, Y.; Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 2021, 1, 87.

[2]

Wang, X.; Huang, S. C.; Hu, S.; Yan, S.; Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271.

[3]

Langer, J.; de Aberasturi, D. J.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.

[4]

Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961.

[5]

Ong, T. T. X.; Blanch, E. W.; Jones, O. A. H. Surface enhanced Raman spectroscopy in environmental analysis, monitoring and assessment. Sci. Total Environ. 2020, 720, 137601.

[6]

Wen, B. Y.; Chen, Q. Q.; Radjenovic, P. M.; Dong, J. C.; Tian, Z. Q.; Li, J. F. In situ surface-enhanced Raman spectroscopy characterization of electrocatalysis with different nanostructures. Annu. Rev. Phys. Chem. 2021, 72, 331–351.

[7]

Guselnikova, O.; Lim, H.; Kim, H. J.; Kim, S. H.; Gorbunova, A.; Eguchi, M.; Postnikov, P.; Nakanishi, T.; Asahi, T.; Na, J. et al. New trends in nanoarchitectured SERS substrates: Nanospaces, 2D materials, and organic heterostructures. Small 2022, 18, 2107182.

[8]

Lee, H. K.; Lee, Y. H.; Koh, C. S. L.; Phan-Quang, G. C.; Han, X. M.; Lay, C. L.; Sim, H. Y. F.; Kao, Y. C.; An, Q.; Ling, X. Y. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 2019, 48, 731–756.

[9]

Jung, I.; Kim, J.; Lee, S.; Park, W.; Park, S. Multiple stepwise synthetic pathways toward complex plasmonic 2D and 3D nanoframes for generation of electromagnetic hot zones in a single entity. Acc. Chem. Res. 2023, 56, 270–283.

[10]

Liu, Y.; Kim, M.; Cho, S. H.; Jung, Y. S. Vertically aligned nanostructures for a reliable and ultrasensitive SERS-active platform: Fabrication and engineering strategies. Nano Today 2021, 37, 101063.

[11]

Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.

[12]

Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

[13]

Reguera, J.; Langer, J.; de Aberasturi, D. J.; Liz-Marzán, L. M. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 2017, 46, 3866–3885.

[14]

Becerril-Castro, I. B.; Calderon, I.; Pazos-Perez, N.; Guerrini, L.; Schulz, F.; Feliu, N.; Chakraborty, I.; Giannini, V.; Parak, W. J.; Alvarez-Puebla, R. A. Gold nanostars: Synthesis, optical and SERS analytical properties. Anal. Sens. 2022, 2, e202200005.

[15]

de Aberasturi, D. J.; Henriksen-Lacey, M.; Litti, L.; Langer, J.; Liz-Marzán, L. M. Using SERS tags to image the three-dimensional structure of complex cell models. Adv. Funct. Mater. 2020, 30, 1909655.

[16]

Tanwar, S.; Haldar, K. K.; Sen, T. DNA origami directed Au nanostar dimers for single-molecule surface-enhanced Raman scattering. J. Am. Chem. Soc. 2017, 139, 17639–17648.

[17]

Zhang, R. Y.; Li, L. W.; Guo, Y.; Shi, Y. F.; Li, J. F.; Long, Y. T.; Fang, J. X. Confined-enhanced Raman spectroscopy. Nano Lett. 2023, 23, 11771–11777.

[18]

Kim, J. M.; Lee, C.; Lee, Y.; Lee, J.; Park, S. J.; Park, S.; Nam, J. M. Synthesis, assembly, optical properties, and sensing applications of plasmonic gap nanostructures. Adv. Mater. 2021, 33, 2006966.

[19]

Lim, D. K.; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2010, 9, 60–67.

[20]

Trinh, H. D.; Kim, S.; Park, J.; Yoon, S. Core-satellite-satellite hierarchical nanostructures: Assembly, plasmon coupling, and gap-selective surface-enhanced Raman scattering. Nanoscale 2022, 14, 17003–17012.

[21]

Kumar, S.; Kumar, A.; Kim, G. H.; Rhim, W. K.; Hartman, K. L.; Nam, J. M. Myoglobin and polydopamine-engineered Raman nanoprobes for detecting, imaging, and monitoring reactive oxygen species in biological samples and living cells. Small 2017, 13, 1701584.

[22]

Baumberg, J. J.; Aizpurua, J.; Mikkelsen, M. H.; Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 2019, 18, 668–678.

[23]

Zrimsek, A. B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M. O.; Chapman, C. T.; Henry, A. I.; Schatz, G. C.; Van Duyne, R. P. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 7583–7613.

[24]

Zhang, H.; Duan, S.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Core–shell nanostructure-enhanced Raman spectroscopy for surface catalysis. Acc. Chem. Res. 2020, 53, 729–739.

[25]

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

[26]

Xu, Y. K.; Zhang, Y. R.; Li, C. C.; Ye, Z. W.; Bell, S. E. J. SERS as a probe of surface chemistry enabled by surface-accessible plasmonic nanomaterials. Acc. Chem. Res. 2023, 56, 2072–2083.

[27]

Itoh, T.; Procházka, M.; Dong, Z. C.; Ji, W.; Yamamoto, Y. S.; Zhang, Y.; Ozaki, Y. Toward a new era of SERS and TERS at the nanometer scale: From fundamentals to innovative applications. Chem. Rev. 2023, 123, 1552–1634.

[28]

Bell, S. E. J.; Charron, G.; Cortés, E.; Kneipp, J.; de la Chapelle, M. L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem., Int. Ed. 2020, 59, 5454–5462.

[29]

Huang, J. A.; Mousavi, M. Z.; Zhao, Y. Q.; Hubarevich, A.; Omeis, F.; Giovannini, G.; Schütte, M.; Garoli, D.; De Angelis, F. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat. Commun. 2019, 10, 5321.

[30]

Sunil, J.; Narayana, C.; Kumari, G.; Jayaramulu, K. Raman spectroscopy, an ideal tool for studying the physical properties and applications of metal-organic frameworks (MOFs). Chem. Soc. Rev. 2023, 52, 3397–3437.

[31]

Huang, C. H.; Li, A. L.; Chen, X. Y.; Wang, T. Understanding the role of metal-organic frameworks in surface-enhanced Raman scattering application. Small 2020, 16, 2004802.

[32]

Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

[33]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[34]

Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.

[35]

Koh, C. S. L.; Sim, H. Y. F.; Leong, S. X.; Boong, S. K.; Chong, C.; Ling, X. Y. Plasmonic nanoparticle-metal-organic framework (NP-MOF) nanohybrid platforms for emerging plasmonic applications. ACS Mater. Lett. 2021, 3, 557–573.

[36]

Zheng, G. C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Plasmonic metal-organic frameworks. SmartMat 2021, 2, 446–465.

[37]

Lafuente, M.; De Marchi, S.; Urbiztondo, M.; Pastoriza-Santos, I.; Pérez-Juste, I.; Santamaria, J.; Mallada, R.; Pina, M. Plasmonic MOF thin films with Raman internal standard for fast and ultrasensitive SERS detection of chemical warfare agents in ambient air. ACS Sens. 2021, 6, 2241–2251.

[38]

Yang, X. Q.; Liu, Y.; Lam, S. H.; Wang, J.; Wen, S. Z.; Yam, C. Y.; Shao, L.; Wang, J. F. Site-selective deposition of metal-organic frameworks on gold nanobipyramids for surface-enhanced Raman scattering. Nano Lett. 2021, 21, 8205–8212.

[39]

Chen, Q. Q.; Hou, R. N.; Zhu, Y. Z.; Wang, X. T.; Zhang, H.; Zhang, Y. J.; Zhang, L.; Tian, Z. Q.; Li, J. F. Au@ZIF-8 core–shell nanoparticles as a SERS substrate for volatile organic compound gas detection. Anal. Chem. 2021, 93, 7188–7195.

[40]

Ding, Q. Q.; Wang, J.; Chen, X. Y; Liu, H.; Li, Q. J.; Wang, Y. L.; Yang, S. K. Quantitative and sensitive SERS platform with analyte enrichment and filtration function. Nano Lett. 2020, 20, 7304–7312.

[41]

He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core–shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

[42]

Fu, J. H.; Zhong, Z.; Xie, D.; Guo, Y. J.; Kong, D. X.; Zhao, Z. X.; Zhao, Z. X.; Li, M. SERS-active MIL-100(Fe) sensory array for ultrasensitive and multiplex detection of VOCs. Angew. Chem., Int. Ed. 2020, 59, 20489–20498.

[43]

Hang, L. F.; Zhou, F.; Men, D. D.; Li, H. L.; Li, X. Y.; Zhang, H. H.; Liu, G. Q.; Cai, W. P.; Li, C. C.; Li, Y. Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks. Nano Res. 2017, 10, 2257–2270.

[44]

Liu, S.; Huo, Y. P.; Deng, S. M.; Li, G. H.; Li, S., Huang, L., Ren, S. Y.; Gao, Z. X. A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin. Biosens. Bioelectron. 2022, 201, 113891.

[45]

Shao, Q. C.; Zhang, D.; Wang, C. E.; Tang, Z. X.; Zou, M. Q.; Yang, X. B.; Gong, H. P.; Yu, Z.; Jin, S. Z.; Liang, P. Ag@MIL-101(Cr) film substrate with high SERS enhancement effect and uniformity. J. Phys. Chem. C 2021, 125, 7297–7304.

[46]

Osterrieth, J. W. M.; Wright, D.; Noh, H.; Kung, C. W.; Vulpe, D.; Li, A.; Park, J. E.; Van Duyne, R. P.; Moghadam, P. Z.; Baumberg, J. J. et al. Core–shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective Raman probes. J. Am. Chem. Soc. 2019, 141, 3893–3900.

[47]

Li, J.; Liu, Z. F.; Tian, D. H.; Li, B. J.; Shao, L.; Lou, Z. Z. Assembly of gold nanorods functionalized by zirconium-based metal-organic frameworks for surface enhanced Raman scattering. Nanoscale 2020, 14, 5561–5568.

[48]

Cheng, J.; Liu, Y. L.; Wang, P. L.; Tang, Z. Y. Hot zone empowered highly sensitive surface-enhanced Raman scattering analysis using Au@HOF nanoparticles. ACS Mater. Lett. 2023, 5, 2776–2784.

[49]

Zheng, G. C.; de Marchi, S.; López-Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez-Juste, I.; Hill, E. H.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I. et al. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935–3943.

[50]

Phan-Quang, G. C.; Yang, N. C.; Lee, H. K.; Sim, H. Y. F.; Koh, C. S. L.; Kao, Y. C.; Wong, Z. C.; Tan, E. K. M.; Miao, Y. E.; Fan, W. et al. Tracking airborne molecules from afar: Three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring. ACS Nano 2019, 13, 12090–12099.

[51]

De Marchi, S.; Vázquez-Iglesias, L.; Bodelón, G.; Pérez-Juste, I.; Fernández, L. Á.; Pérez-Juste, J.; Pastoriza-Santos, I. Programmable modular assembly of functional proteins on Raman-encoded zeolitic imidazolate framework-8 (ZIF-8) nanoparticles as SERS tags. Chem. Mater. 2020, 32, 5739–5749.

[52]

Sim, H. Y. F.; Lee, H. K.; Han, X. M.; Koh, C. S. L.; Phan-Quang, G. C.; Lay, C. L.; Kao, Y. C.; Phang, I. Y.; Yeow, E. K. L.; Ling, X. Y. Concentrating immiscible molecules at Solid@MOF interfacial nanocavities to drive an inert gas-liquid reaction at ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 17058–17062.

[53]

Lee, H. K.; Lee, Y. H.; Morabito, J. V.; Liu, Y. J.; Koh, C. S. L.; Phang, I. Y.; Pedireddy, S.; Han, X. M.; Chou, L. Y.; Tsung, C. K. et al. Driving CO2 to a quasi-condensed phase at the interface between a nanoparticle surface and a metal-organic framework at 1 bar and 298 K. J. Am. Chem. Soc. 2017, 139, 11513–11518.

[54]

Koh, C. S. L.; Lee, H. K.; Han, X. M.; Sim, H. Y. F.; Ling, X. Y. Plasmonic nose: Integrating the MOF-enabled molecular preconcentration effect with a plasmonic array for recognition of molecular-level volatile organic compounds. Chem. Commun. 2018, 54, 2546–2549.

[55]

Pallavicini, P.; Donà, A.; Casu, A.; Chirico, G.; Collini, M.; Dacarro, G.; Falqui, A.; Milanese, C.; Sironi, L.; Taglietti, A. Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem. Commun. 2013, 49, 6265–6267.

[56]

Atta, S.; Beetz, M.; Fabris, L. Understanding the role of AgNO3 concentration and seed morphology in the achievement of tunable shape control in gold nanostars. Nanoscale 2019, 11, 2946–2958.

[57]

Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

[58]

Moreau, L. M.; Jones, M. R.; Roth, E. W.; Wu, J. S.; Kewalramani, S.; O'Brien, M. N.; Chen, B. R.; Mirkin, C. A.; Bedzyk, M. J. The role of trace Ag in the synthesis of Au nanorods. Nanoscale 2019, 11, 11744–11754.

[59]

Zhu, X. Z.; Jia, H. L.; Zhu, X. M.; Cheng, S.; Zhuo, X. L.; Qin, F.; Yang, Z.; Wang, J. F. Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity. Adv. Funct. Mater. 2017, 27, 1700016.

[60]

Kou, X. S.; Zhang, S. Z.; Yang, Z.; Tsung, C. K.; Stucky, G. D.; Sun, L. D.; Wang, J. F.; Yan, C. H. Glutathione- and cysteine-induced transverse overgrowth on gold nanorods. J. Am. Chem. Soc. 2007, 129, 6402–6404.

[61]

Pan, Y. C.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H. B.; Lai, Z. P. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940.

[62]

Wang, F.; Cheng, S.; Bao, Z. H.; Wang, J. F. Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew. Chem., Int. Ed. 2013, 52, 10344–10348.

[63]

Kandambeth, S.; Venkatesh, V.; Shinde, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 2015, 6, 6786.

[64]

Liu, X. W.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U. Three-step nucleation of metal-organic framework nanocrystals. Proc. Natl. Acad. Sci. USA 2021, 118, e2008880118.

[65]

Lei, D. Y.; Fernández-Domínguez, A. I.; Sonnefraud, Y.; Appavoo, K.; Haglund, R. F. Jr.; Pendry, J. B.; Maier, S. A. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano 2012, 6, 1380–1386.

Nano Research
Pages 9166-9173
Cite this article:
Liu Y, Chui KK, Xia X, et al. Selective deposition of a MOF at the spikes of Au nanostars for SERS detection. Nano Research, 2024, 17(10): 9166-9173. https://doi.org/10.1007/s12274-024-6737-8
Topics:
Part of a topical collection:

1086

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 29 February 2024
Revised: 02 May 2024
Accepted: 06 May 2024
Published: 18 June 2024
© Tsinghua University Press 2024
Return