AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Visualizing the crystallization of sodium chloride under supersaturated condition

Mao Ye§Tao Xu§Yuwei XiongYatong ZhuMingrui ZhouLongxiang HanJinyi SunMing QinLitao Sun( )
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing 210096, China

§ Mao Ye and Tao Xu contributed equally to this work.

Show Author Information

Graphical Abstract

An electron beam-induced crystallization method is carried out in in situ liquid cell transmission electron microscopy (TEM) to visualize the crystallization of NaCl under supersaturated condition. The formation of initial crystalline seeds from solution and the subsequent growth of NaCl crystals are captured and clarified.

Abstract

Crystallization in supersaturated solution plays a fundamental role in a variety of natural and industrial processes. However, a thorough understanding of crystallization phenomena in supersaturated solution is still difficult because the real-time visualization of crystallization processes under supersaturated condition is a great challenge. Herein, an electron beam-induced crystallization method was carried out in in situ liquid cell transmission electron microscopy (TEM) to visualize the crystallization of NaCl under supersaturated condition in real time. Crucial steps and behaviors in the crystallization of NaCl were captured and clarified, including the growth of NaCl nanocrystals with different morphologies, the formation of initial crystalline seeds from amorphous ion clusters, and the non-equilibrium growth behaviors caused by uneven distribution of precursor ions. This study provides the real-time visualization of detailed nucleation and growth behaviors in NaCl crystallization and brings an ideal strategy for investigating crystallization phenomena under supersaturated condition.

Electronic Supplementary Material

Video
6739_ESM2.mp4
6739_ESM3.mp4
6739_ESM4.mp4
6739_ESM5.mp4
6739_ESM6.mp4
Download File(s)
6739_ESM1.pdf (4 MB)

References

[1]

Wang, X. X.; Chen, C. C.; Binder, K.; Kuhn, U.; Pöschl, U.; Su, H.; Cheng, Y. F. Molecular dynamics simulation of the surface tension of aqueous sodium chloride: From dilute to highly supersaturated solutions and molten salt. Atmos. Chem. Phys. 2018, 18, 17077–17086.

[2]

Ya, T.; Du, S.; Li, Z. Y.; Liu, S. D.; Zhu, M. H.; Liu, X. J.; Jing, Z. B.; Hai, R. T.; Wang, X. H. Successional dynamics of molecular ecological network of anammox microbial communities under elevated salinity. Water Res. 2021, 188, 116540.

[3]

Rasool, S.; Ahmad, A.; Siddiqi, T. O.; Ahmad, P. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol. Plant. 2013, 35, 1039–1050.

[4]

Ghorbani, A.; Pishkar, L.; Saravi, K. V.; Chen, M. X. Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na+/K+ transporters in tomato under NaCl stress. Front. Plant Sci. 2023, 14, 1135943.

[5]

Wang, L.; Zhang, M.; Bhandari, B.; Yang, C. H. Investigation on fish surimi gel as promising food material for 3D printing. J. Food Eng. 2018, 220, 101–108.

[6]

Salaberría, F.; Marzocchi, S.; Bortolazzo, E.; Carrín, M. E.; Caboni, M. F. Study of the effect of NaCl on lipolysis in parmigiano reggiano cheese. ACS Food Sci. Technol. 2021, 1, 54–59.

[7]

Zhang, S. J.; Zhang, Y. S.; Shao, G. S.; Zhang, P. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions. Nano Res. 2021, 14, 3942–3951.

[8]

Jiao, Y. Y.; Gu, X. K.; Zhai, P. B.; Wei, Y.; Liu, W.; Chen, Q.; Yang, Z. L.; Zuo, J. H.; Wang, L.; Xu, T. F. et al. Three-dimensional Fe single-atom catalyst for high-performance cathode of Zn-air batteries. Nano Lett. 2022, 22, 7386–7393.

[9]

Pang, R. Y.; Xia, H. Y.; Li, J.; Wang, E. K. Template-assisted formation of atomically dispersed iron anchoring on nitrogen-doped porous carbon matrix for efficient oxygen reduction. Nano Res. 2023, 16, 4671–4677.

[10]

Grossier, R.; Magnaldo, A.; Veesler, S. Ultra-fast crystallization due to confinement. J. Cryst. Growth 2010, 312, 487–489.

[11]

Chakraborty, D.; Patey, G. N. How crystals nucleate and grow in aqueous NaCl solution. J. Phys. Chem. Lett. 2013, 4, 573–578.

[12]

Zimmermann, N. E. R.; Vorselaars, B.; Quigley, D.; Peters, B. Nucleation of NaCl from aqueous solution: Critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc. 2015, 137, 13352–13361.

[13]

Desarnaud, J.; Derluyn, H.; Carmeliet, J.; Bonn, D.; Shahidzadeh, N. Metastability limit for the nucleation of NaCl crystals in confinement. J. Phys. Chem. Lett. 2014, 5, 890–895.

[14]

Hwang, H.; Cho, Y. C.; Lee, S.; Lee, Y. H.; Kim, S.; Kim, Y.; Jo, W.; Duchstein, P.; Zahn, D.; Lee, G. W. Hydration breaking and chemical ordering in a levitated NaCl solution droplet beyond the metastable zone width limit: Evidence for the early stage of two-step nucleation. Chem. Sci. 2021, 12, 179–187.

[15]

Zhang, J. Y.; Sun, Z. F.; Kang, Z. W.; Lin, H. C.; Liu, H. D.; He, Y.; Zeng, Z. Y.; Zhang, Q. B. Unveiling the dynamic oxidative etching mechanisms of nanostructured metals/metallic oxides in liquid media through in situ transmission electron microscopy. Adv. Funct. Mater. 2022, 32, 2204976.

[16]

Kang, Z. W.; Zhang, J. Y.; Guo, X. H.; Mao, Y. F.; Yang, Z. M.; Kankala, R. K.; Zhao, P.; Chen, A. Z. Observing the evolution of metal oxides in liquids. Small 2023, 19, 2304781.

[17]

Textor, M.; de Jonge, N. Strategies for preparing graphene liquid cells for transmission electron microscopy. Nano Lett. 2018, 18, 3313–3321.

[18]

Zhang, J. Y.; Jiang, Y. H.; Fan, Q. Y.; Qu, M.; He, N. N.; Deng, J. X.; Sun, Y.; Cheng, J.; Liao, H. G.; Sun, S. G. Atomic scale tracking of single layer oxide formation: Self-peeling and phase transition in solution. Small Methods 2021, 5, 2001234.

[19]

Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F. M.; Bau, H. H. Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 2014, 118, 22373–22382.

[20]

Cho, H.; Jones, M. R.; Nguyen, S. C.; Hauwiller, M. R.; Zettl, A.; Alivisatos, A. P. The use of graphene and its derivatives for liquid-phase transmission electron microscopy of radiation-sensitive specimens. Nano Lett. 2017, 17, 414–420.

[21]

Rehn, S. M.; Jones, M. R. New strategies for probing energy systems with in situ liquid-phase transmission electron microscopy. ACS Energy Lett. 2018, 3, 1269–1278.

[22]

Ye, M.; Xu, T.; Liu, M.; Zhu, Y. T.; Yuan, D. D.; Zhang, H.; Qin, M.; Sun, L. T. Revealing dominant oxidative species in reactive oxygen species-driven rapid chemical etching. Nano Lett. 2023, 23, 7319–7326.

[23]

Tan, S. F.; Chee, S. W.; Lin, G. H.; Bosman, M.; Lin, M.; Mirsaidov, U.; Nijhuis, C. A. Real-time imaging of the formation of Au–Ag core–shell nanoparticles. J. Am. Chem. Soc. 2016, 138, 5190–5193.

[24]

Hutzler, A.; Schmutzler, T.; Jank, M. P. M.; Branscheid, R.; Unruh, T.; Spiecker, E.; Frey, L. Unravelling the mechanisms of gold–silver core–shell nanostructure formation by in situ TEM using an advanced liquid cell design. Nano Lett. 2018, 18, 7222–7229.

[25]

Xiao, D. D.; Wu, Z. G.; Song, M.; Chun, J.; Schenter, G. K.; Li, D. S. Silver nanocube and nanobar growth via anisotropic monomer addition and particle attachment processes. Langmuir 2018, 34, 1466–1472.

[26]

Lee, S.; Schneider, N. M.; Tan, S. F.; Ross, F. M. Temperature dependent nanochemistry and growth kinetics using liquid cell transmission electron microscopy. ACS Nano 2023, 17, 5609–5619.

[27]

Lehnert, T.; Kretschmer, S.; Bräuer, F.; Krasheninnikov, A. V.; Kaiser, U. Quasi-two-dimensional NaCl crystals encapsulated between graphene sheets and their decomposition under an electron beam. Nanoscale 2021, 13, 19626–19633.

[28]

Egerton, R. Radiation damage and nanofabrication in TEM and STEM. Microsc. Today 2021, 29, 56–59.

[29]

Alejandre, J.; Hansen, J. P. Ions in water: From ion clustering to crystal nucleation. Phys. Rev. E 2007, 76, 061505.

[30]

Lanaro, G.; Patey, G. N. Birth of NaCl crystals: Insights from molecular simulations. J. Phys. Chem. B 2016, 120, 9076–9087.

[31]

Mucha, M.; Jungwirth, P. Salt crystallization from an evaporating aqueous solution by molecular dynamics simulations. J. Phys. Chem. B 2003, 107, 8271–8274.

[32]

Zahn, D. Atomistic mechanism of NaCl nucleation from an aqueous solution. Phys. Rev. Lett. 2004, 92, 040801.

[33]

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angew. Chem., Int. Ed. 2009, 48, 60–103.

[34]

Woehl, T. J.; Evans, J. E.; Arslan, I.; Ristenpart, W. D.; Browning, N. D. Direct in situ Determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 2012, 6, 8599–8610.

[35]

Kadota, K.; Wada, M.; Shimosaka, A.; Shirakawa, Y.; Hidaka, J. Structural dependence of ionic motion at interfaces between NaCl crystal surfaces and supersaturated solutions in crystallization process. Adv. Powder Technol. 2007, 18, 155–173.

Nano Research
Pages 7786-7792
Cite this article:
Ye M, Xu T, Xiong Y, et al. Visualizing the crystallization of sodium chloride under supersaturated condition. Nano Research, 2024, 17(8): 7786-7792. https://doi.org/10.1007/s12274-024-6739-6
Topics:

360

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 March 2024
Revised: 03 May 2024
Accepted: 06 May 2024
Published: 26 June 2024
© Tsinghua University Press 2024
Return