The battery management system is employed to monitor the external temperature of the lithium-ion battery in order to detect any potential overheating. However, this outside–in detection method often suffers from a lag and is therefore unable to accurately predict the battery’s real-time state. Herein, an inside–out frequency response approach is used to accurately monitor the battery’s state at various temperatures in real-time and correlate it with the solid electrolyte interphase (SEI) evolution of the graphite electrode. The SEI evolution at temperatures of −15, 25, 60, and 90 °C exhibits certain regular characteristics with temperature change. At a temperature of −15 °C, the Li+-solvent interaction of lithium-ion slowed down, resulting in a significant reduction in performance. At 25 °C, a LiF-rich inorganic SEI was identified as forming, which facilitated lithium-ion transportation. However, high temperatures would induce decomposition of lithium hexafluorophosphate (LiPF6) and lithium-ion electrolyte. At the extreme temperature of 90 °C, the SEI would be organic-rich, and LixPyFz, a decomposition product of lithium salts, was further oxidized to LixPOyFz, which led to a surge in the charge-transfer resistance at SEI (Rsei) and a reduction in Coulombic efficiency (CE). This changing relationship can be recorded in real time from the inside out by electrochemical impedance spectroscopy (EIS) testing. This provides a new theoretical basis for the structural evolution of lithium-ion batteries and the regular characterization of EIS.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.
Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.
Wu, H.; Zhuo, D.; Kong, D. S.; Cui, Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 2014, 5, 5193.
Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F. Safety focused modeling of lithium-ion batteries: A review. J. Power Sources 2016, 306, 178–192.
Wang, Q. S.; Ping, P.; Zhao, X. J.; Chu, G. Q.; Sun, J. H.; Chen, C. H. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224.
Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267.
Wang, S. H.; Ma, Z. C.; Zhao, W. Y.; Zhang, W.; Li, C. F.; Yang, S. G. et al. Temperature-shift-induced mechanical property evolution of lithium-ion battery separator using cyclic nanoindentation. ACS Appl. Mater. Interfaces 2022, 14, 47578–47586.
Guo, Z. X.; Yang, S. G.; Zhao, W. Y.; Wang, S. H.; Liu, J.; Ma, Z. C. et al. Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries. J. Energy Chem. 2023, 78, 497–506.
Lin, Y. H.; Ruan, S. J.; Chen, Y. X.; Li, Y. F. Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy. Renew. Sustain. Energy Rev. 2023, 188, 113807.
Lu, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022, 6, 1172–1198.
Teliz, E.; Zinola, C. F.; Díaz, V. Identification and quantification of ageing mechanisms in Li-ion batteries by electrochemical impedance spectroscopy. Electrochim. Acta 2022, 426, 140801.
Mo, Y. B.; Liu, G. P.; Chen, J. W.; Zhu, X.; Peng, Y.; Wang, Y. G.; Wang, C. X.; Dong, X. L.; Xia, Y. Y. Unraveling the temperature-responsive solvation structure and interfacial chemistry for graphite anodes. Energy Environ. Sci. 2024, 17, 227–237.
Yan, C.; Yao, Y. X.; Cai, W. L.; Xu, L.; Kaskel, S.; Park, H. S.; Huang, J. Q. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries. J. Energy Chem. 2020, 49, 335–338.
Rodrigues, M. T. F.; Sayed, F. N.; Gullapalli, H.; Ajayan, P. M. High-temperature solid electrolyte interphases (SEI) in graphite electrodes. J. Power Sources 2018, 381, 107–115.
Wang, Y. Q.; Wu, Z. Z.; Azad, F. M.; Zhu, Y. T.; Wang, L. Z.; Hawker, C. J.; Whittaker, A. K.; Forsyth, M.; Zhang, C. Fluorination in advanced battery design. Nat. Rev. Mater. 2024, 9, 119–133.
Weng, S. T.; Zhang, X.; Yang, G. J.; Zhang, S. M.; Ma, B. Y.; Liu, Q. Y.; Liu, Y.; Peng, C. X.; Chen, H. X.; Yu, H. L. et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 2023, 14, 4474.
Wang, J. H.; Luo, J.; Wu, H. C.; Yu, X. Y.; Wu, X. H.; Li, Z. G.; Luo, H. Y.; Zhang, H. T.; Hong, Y. H.; Zou, Y. G. et al. Visualizing and regulating dynamic evolution of interfacial electrolyte configuration during de-solvation process on lithium-metal anode. Angew. Chem., Int. Ed. 2024, 63, e202400254.
Guo, Y. P.; Li, D.; Xiong, R. D.; Li, H. Q. Investigation of the temperature-dependent behaviours of Li metal anode. Chem. Commun. 2019, 55, 9773–9776.
Zhu, Y. L.; Li, W.; Zhang, L.; Fang, W. H.; Ruan, Q. Q.; Li, J.; Zhang, F. J.; Zhang, H. T.; Quan, T.; Zhang, S. J. Electrode/electrolyte interphases in high-temperature batteries: A review. Energy Environ. Sci. 2023, 16, 2825–2855.
Xu, X. Q.; Cheng, X. B.; Jiang, F. N.; Yang, S. J.; Ren, D. S.; Shi, P.; Hsu, H.; Yuan, H.; Huang, J. Q.; Ouyang, M. G. et al. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat 2022, 2, 435–444.
Furat, O.; Finegan, D. P.; Yang, Z. Z.; Neumann, M.; Kim, S.; Tanim, T. R.; Weddle, P.; Smith, K.; Schmidt, V. Quantifying the impact of operating temperature on cracking in battery electrodes, using super-resolution of microscopy images and stereology. Energy Storage Mater. 2024, 64, 103036.
Liu, B. H.; Jia, Y. K.; Yuan, C. H.; Wang, L. B.; Gao, X.; Yin, S.; Xu, J. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review. Energy Storage Mater. 2020, 24, 85–112.
Soni, R.; Robinson, J. B.; Shearing, P. R.; Brett, D. J. L.; Rettie, A. J. E.; Miller, T. S. Lithium-sulfur battery diagnostics through distribution of relaxation times analysis. Energy Storage Mater. 2022, 51, 97–107.
Huang, Q. A.; Shen, Y.; Huang, Y. H.; Zhang, L.; Zhang, J. J. Impedance characteristics and diagnoses of automotive lithium-ion batteries at 7.5% to 93.0% state of charge. Electrochim. Acta 2016, 219, 751–765.
Yamanaka, T.; Takagishi, Y.; Tozuka, Y.; Yamaue, T. Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk. J. Power Sources 2019, 416, 132–140.
Huang, Q. A.; Bai, Y. X.; Wang, L.; Wang, J.; Zhang, F. Z.; Wang, L. L.; Li, X. F.; Zhang, J. J. Time-frequency analysis of Li solid-phase diffusion in spherical active particles under typical discharge modes. J. Energy Chem. 2022, 67, 209–224.
Zheng, Y. J.; Shi, Z. H.; Guo, D. X.; Dai, H. F.; Han, X. B. A simplification of the time-domain equivalent circuit model for lithium-ion batteries based on low-frequency electrochemical impedance spectra. J. Power Sources 2021, 489, 229505.
Wang, Y. Y.; Zhang, X. Q.; Zhou, M. Y.; Huang, J. Q. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2023, 2, e9120046.
Liu, Y. H.; Li, Y. F.; Sun, J. M.; Du, Z. Z.; Hu, X. Q.; Bi, J. X.; Liu, C. T.; Ai, W.; Yan, Q. Y. Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. Nano Res. Energy 2023, 2, e9120048.
Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 2019, 4, 664–670.