Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The battery management system is employed to monitor the external temperature of the lithium-ion battery in order to detect any potential overheating. However, this outside–in detection method often suffers from a lag and is therefore unable to accurately predict the battery’s real-time state. Herein, an inside–out frequency response approach is used to accurately monitor the battery’s state at various temperatures in real-time and correlate it with the solid electrolyte interphase (SEI) evolution of the graphite electrode. The SEI evolution at temperatures of −15, 25, 60, and 90 °C exhibits certain regular characteristics with temperature change. At a temperature of −15 °C, the Li+-solvent interaction of lithium-ion slowed down, resulting in a significant reduction in performance. At 25 °C, a LiF-rich inorganic SEI was identified as forming, which facilitated lithium-ion transportation. However, high temperatures would induce decomposition of lithium hexafluorophosphate (LiPF6) and lithium-ion electrolyte. At the extreme temperature of 90 °C, the SEI would be organic-rich, and LixPyFz, a decomposition product of lithium salts, was further oxidized to LixPOyFz, which led to a surge in the charge-transfer resistance at SEI (Rsei) and a reduction in Coulombic efficiency (CE). This changing relationship can be recorded in real time from the inside out by electrochemical impedance spectroscopy (EIS) testing. This provides a new theoretical basis for the structural evolution of lithium-ion batteries and the regular characterization of EIS.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.
Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.
Wu, H.; Zhuo, D.; Kong, D. S.; Cui, Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 2014, 5, 5193.
Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F. Safety focused modeling of lithium-ion batteries: A review. J. Power Sources 2016, 306, 178–192.
Wang, Q. S.; Ping, P.; Zhao, X. J.; Chu, G. Q.; Sun, J. H.; Chen, C. H. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224.
Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267.
Wang, S. H.; Ma, Z. C.; Zhao, W. Y.; Zhang, W.; Li, C. F.; Yang, S. G. et al. Temperature-shift-induced mechanical property evolution of lithium-ion battery separator using cyclic nanoindentation. ACS Appl. Mater. Interfaces 2022, 14, 47578–47586.
Guo, Z. X.; Yang, S. G.; Zhao, W. Y.; Wang, S. H.; Liu, J.; Ma, Z. C. et al. Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries. J. Energy Chem. 2023, 78, 497–506.
Lin, Y. H.; Ruan, S. J.; Chen, Y. X.; Li, Y. F. Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy. Renew. Sustain. Energy Rev. 2023, 188, 113807.
Lu, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022, 6, 1172–1198.
Teliz, E.; Zinola, C. F.; Díaz, V. Identification and quantification of ageing mechanisms in Li-ion batteries by electrochemical impedance spectroscopy. Electrochim. Acta 2022, 426, 140801.
Mo, Y. B.; Liu, G. P.; Chen, J. W.; Zhu, X.; Peng, Y.; Wang, Y. G.; Wang, C. X.; Dong, X. L.; Xia, Y. Y. Unraveling the temperature-responsive solvation structure and interfacial chemistry for graphite anodes. Energy Environ. Sci. 2024, 17, 227–237.
Yan, C.; Yao, Y. X.; Cai, W. L.; Xu, L.; Kaskel, S.; Park, H. S.; Huang, J. Q. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries. J. Energy Chem. 2020, 49, 335–338.
Rodrigues, M. T. F.; Sayed, F. N.; Gullapalli, H.; Ajayan, P. M. High-temperature solid electrolyte interphases (SEI) in graphite electrodes. J. Power Sources 2018, 381, 107–115.
Wang, Y. Q.; Wu, Z. Z.; Azad, F. M.; Zhu, Y. T.; Wang, L. Z.; Hawker, C. J.; Whittaker, A. K.; Forsyth, M.; Zhang, C. Fluorination in advanced battery design. Nat. Rev. Mater. 2024, 9, 119–133.
Weng, S. T.; Zhang, X.; Yang, G. J.; Zhang, S. M.; Ma, B. Y.; Liu, Q. Y.; Liu, Y.; Peng, C. X.; Chen, H. X.; Yu, H. L. et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 2023, 14, 4474.
Wang, J. H.; Luo, J.; Wu, H. C.; Yu, X. Y.; Wu, X. H.; Li, Z. G.; Luo, H. Y.; Zhang, H. T.; Hong, Y. H.; Zou, Y. G. et al. Visualizing and regulating dynamic evolution of interfacial electrolyte configuration during de-solvation process on lithium-metal anode. Angew. Chem., Int. Ed. 2024, 63, e202400254.
Guo, Y. P.; Li, D.; Xiong, R. D.; Li, H. Q. Investigation of the temperature-dependent behaviours of Li metal anode. Chem. Commun. 2019, 55, 9773–9776.
Zhu, Y. L.; Li, W.; Zhang, L.; Fang, W. H.; Ruan, Q. Q.; Li, J.; Zhang, F. J.; Zhang, H. T.; Quan, T.; Zhang, S. J. Electrode/electrolyte interphases in high-temperature batteries: A review. Energy Environ. Sci. 2023, 16, 2825–2855.
Xu, X. Q.; Cheng, X. B.; Jiang, F. N.; Yang, S. J.; Ren, D. S.; Shi, P.; Hsu, H.; Yuan, H.; Huang, J. Q.; Ouyang, M. G. et al. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat 2022, 2, 435–444.
Furat, O.; Finegan, D. P.; Yang, Z. Z.; Neumann, M.; Kim, S.; Tanim, T. R.; Weddle, P.; Smith, K.; Schmidt, V. Quantifying the impact of operating temperature on cracking in battery electrodes, using super-resolution of microscopy images and stereology. Energy Storage Mater. 2024, 64, 103036.
Liu, B. H.; Jia, Y. K.; Yuan, C. H.; Wang, L. B.; Gao, X.; Yin, S.; Xu, J. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review. Energy Storage Mater. 2020, 24, 85–112.
Soni, R.; Robinson, J. B.; Shearing, P. R.; Brett, D. J. L.; Rettie, A. J. E.; Miller, T. S. Lithium-sulfur battery diagnostics through distribution of relaxation times analysis. Energy Storage Mater. 2022, 51, 97–107.
Huang, Q. A.; Shen, Y.; Huang, Y. H.; Zhang, L.; Zhang, J. J. Impedance characteristics and diagnoses of automotive lithium-ion batteries at 7.5% to 93.0% state of charge. Electrochim. Acta 2016, 219, 751–765.
Yamanaka, T.; Takagishi, Y.; Tozuka, Y.; Yamaue, T. Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk. J. Power Sources 2019, 416, 132–140.
Huang, Q. A.; Bai, Y. X.; Wang, L.; Wang, J.; Zhang, F. Z.; Wang, L. L.; Li, X. F.; Zhang, J. J. Time-frequency analysis of Li solid-phase diffusion in spherical active particles under typical discharge modes. J. Energy Chem. 2022, 67, 209–224.
Zheng, Y. J.; Shi, Z. H.; Guo, D. X.; Dai, H. F.; Han, X. B. A simplification of the time-domain equivalent circuit model for lithium-ion batteries based on low-frequency electrochemical impedance spectra. J. Power Sources 2021, 489, 229505.
Wang, Y. Y.; Zhang, X. Q.; Zhou, M. Y.; Huang, J. Q. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2023, 2, e9120046.
Liu, Y. H.; Li, Y. F.; Sun, J. M.; Du, Z. Z.; Hu, X. Q.; Bi, J. X.; Liu, C. T.; Ai, W.; Yan, Q. Y. Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. Nano Res. Energy 2023, 2, e9120048.
Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 2019, 4, 664–670.