Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Current AB5-type hydrogen storage alloys employed in nickel-metal hydride (NiMH) batteries exhibit exceptional low-temperature discharge performance but suffer from limited cycle life and insufficient high-temperature stability. To overcome these challenges, we introduce a hydrothermal synthesized LaF3 coating layer on the surface of the AB5 anode material. This LaF3 coating layer adds a protective barrier for the active material, significantly improving the battery's cycle life and high-temperature stability. Our findings indicate that (1) the LaF3 coated anode demonstrates an extended cycle life with increased specific capacity and a capacity retention of 88% after 40 cycles of abusive overcharging and rapid discharging at room temperature. (2) The synthesized anode exhibits a 97% recovery of its specific capacity of 292.7 mAh/g following 144 h of high-temperature storage. (3) The low-temperature discharge capacity of the synthesized anode remains on par with the pristine AB5 alloy at 230.4 mAh/g in a –40 °C environment. This research presents a significant advancement in hydrogen storage alloy coatings and offers valuable insights for designing electrodes in NiMH batteries.
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.
Zhang, Y. M.; Liu, N. Nanostructured electrode materials for high-energy rechargeable Li, Na and Zn batteries. Chem. Mater. 2017, 29, 9589–9604.
Zhu, Z. X.; Jiang, T. L.; Ali, M.; Meng, Y. H.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable batteries for grid scale energy storage. Chem. Rev. 2022, 122, 16610–16751.
Bandhauer, T. M.; Garimella, S.; Fuller, T. F. A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 2011, 158, R1–R25.
Zhang, S. S.; Xu, K.; Jow, T. R. The low temperature performance of Li-ion batteries. J. Power Sources 2003, 115, 137–140.
Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700.
Balakrishnan, P. G.; Ramesh, R.; Prem Kumar, T. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414.
Jiang, T. L.; Liu, Z. C.; Yuan, Y.; Zheng, X. H.; Park, S.; Wei, S. Y.; Li, L. X.; Ma, Y. R.; Liu, S.; Chen, J. H. et al. Ultrafast electrical pulse synthesis of highly active electrocatalysts for beyond-industrial-level hydrogen gas batteries. Adv. Mater. 2023, 35, 2300502.
Fetcenko, M. A.; Ovshinsky, S. R.; Reichman, B.; Young, K.; Fierro, C.; Koch, J.; Zallen, A.; Mays, W.; Ouchi, T. Recent advances in NiMH battery technology. J. Power Sources 2007, 165, 544–551.
Zhou, W. H.; Zhu, D.; Tang, Z. Y.; Wu, C. L.; Huang, L. W.; Ma, Z. W.; Chen, Y. G. Improvement in low-temperature and instantaneous high-rate output performance of Al-free AB5-type hydrogen storage alloy for negative electrode in Ni/MH battery: Effect of thermodynamic and kinetic regulation via partial Mn substituting. J. Power Sources 2017, 343, 11–21.
Yang, H.; Chen, Y. G.; Tao, M. D.; Wu, C. L.; Shao, J.; Deng, G. Low temperature electrochemical properties of LaNi4.6– x Mn0.4M x (M = Fe or Co) and effect of oxide layer on EIS responses in metal hydride electrodes. Electrochim. Acta 2010, 55, 648–655.
Karwowska, M.; Jaron, T.; Fijalkowski, K. J.; Leszczynski, P. J.; Rogulski, Z.; Czerwinski, A. Influence of electrolyte composition and temperature on behaviour of AB5 hydrogen storage alloy used as negative electrode in Ni-MH batteries. J. Power Sources 2014, 263, 304–309.
Young, K.; Chao, B.; Liu, Y.; Nei, J. Microstructures of the oxides on the activated AB2 and AB5 metal hydride alloys surface. J. Alloys Compd. 2014, 606, 97–104.
Young, K.; Huang, B.; Regmi, R. K.; Lawes, G.; Liu, Y. Comparisons of metallic clusters imbedded in the surface oxide of AB2, AB5, and A2B7 alloys. J. Alloys Compd. 2010, 506, 831–840.
Balogun, M. S.; Wang, Z. M.; Zhang, H. G.; Yao, Q. R.; Deng, J. Q.; Zhou, H. Y. Effect of high and low temperature on the electrochemical performance of LaNi4.4– x Co0.3Mn0.3Al x hydrogen storage alloys. J. Alloys Compd. 2013, 579, 438–443.
Zhou, W. H.; Zhu, D.; Liu, K.; Li, J. C.; Wu, C. L.; Chen, Y. G. Long-life Ni-MH batteries with high-power delivery at lower temperatures: Coordination of low-temperature and high-power delivery with cycling life of low-Al AB5-type hydrogen storage alloys. Int. J. Hydrogen Energy 2018, 43, 21464–21477.
Young, K.; Ouchi, T.; Reichman, B.; Koch, J.; Fetcenko, M. A. Improvement in the low-temperature performance of AB5 metal hydride alloys by Fe-addition. J. Alloys Compd. 2011, 509, 7611–7617.
Chen, W.; Jin, Y.; Zhao, J.; Liu, N.; Cui, Y. Nickel-hydrogen batteries for large-scale energy storage. Proc. Natl. Acad. Sci. USA 2018, 115, 11694–11699.
Nei, J.; Wang, M. D. Hydrogen storage alloy development for wide operating temperature nickel-metal hydride battery applications. Int. J. Hydrogen Energy 2024, 49, 19–38.
Li, M. M.; Wang, C. C.; Yang, C. C. Development of high-performance hydrogen storage alloys for applications in nickel-metal hydride batteries at ultra-low temperature. J. Power Sources 2021, 491, 229585.
Ye, H.; Xia, B. J.; Wu, W. Q.; Du, K.; Zhang, H. Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB5-type hydrogen storage alloys. J. Power Sources 2002, 111, 145–151.
Ye, H.; Zhang, H. Improvement of the low temperature performances of MmNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloy. J. Electrochem. Soc. 2002, 149, A122–A126.
Fukumoto, Y.; Miyamoto, M.; Matsuoka, M.; Iwakura, C. Effect of the stoichiometric ratio on electrochemical properties of hydrogen storage alloys for nickel-metal hydride batteries. Electrochim. Acta 1995, 40, 845–848.
Ye, H.; Zhang, H.; Cheng, J. X.; Huang, T. S. Effect of Ni content on the structure, thermodynamic and electrochemical properties of the non-stoichiometric hydrogen storage alloys. J. Alloys Compd. 2000, 308, 163–171.
Shu, K. Y.; Zhang, S. K.; Lei, Y. Q.; Lü, G. L.; Wang, Q. D. Study on structure and electrochemical performance of melt-spun non-stoichiometry alloys Ml(NiCoMnTi)5+ x . Int. J. Hydrogen Energy 2003, 28, 1101–1105.
He, X. M.; Jiang, C. Y.; Li, W.; Wan, C. R. Co/Yb hydroxide coating of spherical Ni(OH)2 cathode materials for Ni-MH batteries at elevated temperatures. J. Electrochem. Soc. 2006, 153, A566–A569.
Li, J.; Zhang, H. J.; Wu, C. K.; Cai, X. W.; Wang, M. Y.; Li, Q. M.; Chang, Z. R.; Shangguan, E. B. Enhancing the high-temperature and high-rate properties of nickel hydroxide electrode for nickel-based secondary batteries by using nanoscale Ca(OH)2 and γ-CoOOH. J. Electrochem. Soc. 2019, 166, A1836–A1843.
Uchida, H. H.; Watanabe, Y.; Matsumura, Y.; Uchida, H. Effect of KOH pretreatment on the hydriding properties of LaNi2.5Co2.5 alloy. J. Alloys Compd. 1995, 231, 679–683.
Shen, Y.; Peng, F.; Kontos, S.; Noréus, D. Improved NiMH performance by a surface treatment that creates magnetic Ni-clusters. Int. J. Hydrogen Energy 2016, 41, 9933–9938.
Zhou, W. H.; Tang, Z. Y.; Zhu, D.; Ma, Z. W.; Wu, C. L.; Huang, L. W.; Chen, Y. G. Low-temperature and instantaneous high-rate output performance of AB5-type hydrogen storage alloy with duplex surface hot-alkali treatment. J. Alloys Compd. 2017, 692, 364–374.
Yanagimoto, K.; Majima, K.; Sunada, S.; Sawada, T. Effects of surface modification on surface structure and electrochemical properties of Mm(Ni, Co, Mn, Al)5.0 alloy powder. J. Alloys Compd. 2004, 377, 174–178.
Imoto, T.; Kato, K.; Higashiyama, N.; Kimoto, M.; Itoh, Y.; Nishio, K. Microstructure and electrochemical characteristics of surface-treated Mm(Ni-Co-Al-Mn)4.76 alloys for nickel-metal hydride batteries. J. Alloys Compd. 1999, 285, 272–278.
Sakashita, M.; Li, Z. P.; Suda, S. Fluorination mechanism and its effects on the electrochemical properties of metal hydrides. J. Alloys Compd. 1997, 253–254, 500–505
Zhao, X. Y.; Ma, L. Q.; Gao, Y. J.; Ding, Y.; Shen, X. D. Effect of surface treatments on microstructure and electrochemical properties of La-Ni-Al hydrogen storage alloy. Int. J. Hydrogen Energy 2009, 34, 1904–1909.
Han, Y. H.; Gai, S. L.; Ma, P. A.; Wang, L. Z.; Zhang, M. L.; Huang, S. H.; Yang, P. P. Highly uniform α-NaYF4:Yb/Er hollow microspheres and their application as drug carrier. Inorg. Chem. 2013, 52, 9184–9191.
Chen, M.; Tan, C.; Jiang, W. B.; Huang, J. L.; Min, D.; Liao, C. H.; Wang, H.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. Influence of over-stoichiometry on hydrogen storage and electrochemical properties of Sm-doped low-Co AB5-type alloys as negative electrode materials in nickel-metal hydride batteries. J. Alloys Compd. 2021, 867, 159111.