AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance nickel metal hydride battery anode with enhanced durability and excellent low-temperature discharge capability

Zhitao Chen1Huitian Liu1Jean Nei2Nian Liu1( )
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
GP Batteries, Hongkong, China
Show Author Information

Graphical Abstract

Hydrothermal synthesized stable lanthanum trifluoride coating on the surface of AB5-type alloy can encapsulate the anode material and protect the anode material from alkaline electrolyte corrosion resulting enhancement in room-temperature cycling stability and high-temperature capacity recovery with maintained low-temperature discharging performance.

Abstract

Current AB5-type hydrogen storage alloys employed in nickel-metal hydride (NiMH) batteries exhibit exceptional low-temperature discharge performance but suffer from limited cycle life and insufficient high-temperature stability. To overcome these challenges, we introduce a hydrothermal synthesized LaF3 coating layer on the surface of the AB5 anode material. This LaF3 coating layer adds a protective barrier for the active material, significantly improving the battery's cycle life and high-temperature stability. Our findings indicate that (1) the LaF3 coated anode demonstrates an extended cycle life with increased specific capacity and a capacity retention of 88% after 40 cycles of abusive overcharging and rapid discharging at room temperature. (2) The synthesized anode exhibits a 97% recovery of its specific capacity of 292.7 mAh/g following 144 h of high-temperature storage. (3) The low-temperature discharge capacity of the synthesized anode remains on par with the pristine AB5 alloy at 230.4 mAh/g in a –40 °C environment. This research presents a significant advancement in hydrogen storage alloy coatings and offers valuable insights for designing electrodes in NiMH batteries.

References

[1]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[2]

Zhang, Y. M.; Liu, N. Nanostructured electrode materials for high-energy rechargeable Li, Na and Zn batteries. Chem. Mater. 2017, 29, 9589–9604.

[3]

Zhu, Z. X.; Jiang, T. L.; Ali, M.; Meng, Y. H.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable batteries for grid scale energy storage. Chem. Rev. 2022, 122, 16610–16751.

[4]

Bandhauer, T. M.; Garimella, S.; Fuller, T. F. A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 2011, 158, R1–R25.

[5]

Zhang, S. S.; Xu, K.; Jow, T. R. The low temperature performance of Li-ion batteries. J. Power Sources 2003, 115, 137–140.

[6]

Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700.

[7]

Balakrishnan, P. G.; Ramesh, R.; Prem Kumar, T. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414.

[8]

Jiang, T. L.; Liu, Z. C.; Yuan, Y.; Zheng, X. H.; Park, S.; Wei, S. Y.; Li, L. X.; Ma, Y. R.; Liu, S.; Chen, J. H. et al. Ultrafast electrical pulse synthesis of highly active electrocatalysts for beyond-industrial-level hydrogen gas batteries. Adv. Mater. 2023, 35, 2300502.

[9]

Fetcenko, M. A.; Ovshinsky, S. R.; Reichman, B.; Young, K.; Fierro, C.; Koch, J.; Zallen, A.; Mays, W.; Ouchi, T. Recent advances in NiMH battery technology. J. Power Sources 2007, 165, 544–551.

[10]

Zhou, W. H.; Zhu, D.; Tang, Z. Y.; Wu, C. L.; Huang, L. W.; Ma, Z. W.; Chen, Y. G. Improvement in low-temperature and instantaneous high-rate output performance of Al-free AB5-type hydrogen storage alloy for negative electrode in Ni/MH battery: Effect of thermodynamic and kinetic regulation via partial Mn substituting. J. Power Sources 2017, 343, 11–21.

[11]

Yang, H.; Chen, Y. G.; Tao, M. D.; Wu, C. L.; Shao, J.; Deng, G. Low temperature electrochemical properties of LaNi4.6– x Mn0.4M x (M = Fe or Co) and effect of oxide layer on EIS responses in metal hydride electrodes. Electrochim. Acta 2010, 55, 648–655.

[12]

Karwowska, M.; Jaron, T.; Fijalkowski, K. J.; Leszczynski, P. J.; Rogulski, Z.; Czerwinski, A. Influence of electrolyte composition and temperature on behaviour of AB5 hydrogen storage alloy used as negative electrode in Ni-MH batteries. J. Power Sources 2014, 263, 304–309.

[13]

Young, K.; Chao, B.; Liu, Y.; Nei, J. Microstructures of the oxides on the activated AB2 and AB5 metal hydride alloys surface. J. Alloys Compd. 2014, 606, 97–104.

[14]

Young, K.; Huang, B.; Regmi, R. K.; Lawes, G.; Liu, Y. Comparisons of metallic clusters imbedded in the surface oxide of AB2, AB5, and A2B7 alloys. J. Alloys Compd. 2010, 506, 831–840.

[15]

Balogun, M. S.; Wang, Z. M.; Zhang, H. G.; Yao, Q. R.; Deng, J. Q.; Zhou, H. Y. Effect of high and low temperature on the electrochemical performance of LaNi4.4– x Co0.3Mn0.3Al x hydrogen storage alloys. J. Alloys Compd. 2013, 579, 438–443.

[16]

Zhou, W. H.; Zhu, D.; Liu, K.; Li, J. C.; Wu, C. L.; Chen, Y. G. Long-life Ni-MH batteries with high-power delivery at lower temperatures: Coordination of low-temperature and high-power delivery with cycling life of low-Al AB5-type hydrogen storage alloys. Int. J. Hydrogen Energy 2018, 43, 21464–21477.

[17]

Young, K.; Ouchi, T.; Reichman, B.; Koch, J.; Fetcenko, M. A. Improvement in the low-temperature performance of AB5 metal hydride alloys by Fe-addition. J. Alloys Compd. 2011, 509, 7611–7617.

[18]

Chen, W.; Jin, Y.; Zhao, J.; Liu, N.; Cui, Y. Nickel-hydrogen batteries for large-scale energy storage. Proc. Natl. Acad. Sci. USA 2018, 115, 11694–11699.

[19]

Nei, J.; Wang, M. D. Hydrogen storage alloy development for wide operating temperature nickel-metal hydride battery applications. Int. J. Hydrogen Energy 2024, 49, 19–38.

[20]

Li, M. M.; Wang, C. C.; Yang, C. C. Development of high-performance hydrogen storage alloys for applications in nickel-metal hydride batteries at ultra-low temperature. J. Power Sources 2021, 491, 229585.

[21]

Ye, H.; Xia, B. J.; Wu, W. Q.; Du, K.; Zhang, H. Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB5-type hydrogen storage alloys. J. Power Sources 2002, 111, 145–151.

[22]

Ye, H.; Zhang, H. Improvement of the low temperature performances of MmNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloy. J. Electrochem. Soc. 2002, 149, A122–A126.

[23]

Fukumoto, Y.; Miyamoto, M.; Matsuoka, M.; Iwakura, C. Effect of the stoichiometric ratio on electrochemical properties of hydrogen storage alloys for nickel-metal hydride batteries. Electrochim. Acta 1995, 40, 845–848.

[24]

Ye, H.; Zhang, H.; Cheng, J. X.; Huang, T. S. Effect of Ni content on the structure, thermodynamic and electrochemical properties of the non-stoichiometric hydrogen storage alloys. J. Alloys Compd. 2000, 308, 163–171.

[25]

Shu, K. Y.; Zhang, S. K.; Lei, Y. Q.; Lü, G. L.; Wang, Q. D. Study on structure and electrochemical performance of melt-spun non-stoichiometry alloys Ml(NiCoMnTi)5+ x . Int. J. Hydrogen Energy 2003, 28, 1101–1105.

[26]

He, X. M.; Jiang, C. Y.; Li, W.; Wan, C. R. Co/Yb hydroxide coating of spherical Ni(OH)2 cathode materials for Ni-MH batteries at elevated temperatures. J. Electrochem. Soc. 2006, 153, A566–A569.

[27]

Li, J.; Zhang, H. J.; Wu, C. K.; Cai, X. W.; Wang, M. Y.; Li, Q. M.; Chang, Z. R.; Shangguan, E. B. Enhancing the high-temperature and high-rate properties of nickel hydroxide electrode for nickel-based secondary batteries by using nanoscale Ca(OH)2 and γ-CoOOH. J. Electrochem. Soc. 2019, 166, A1836–A1843.

[28]

Uchida, H. H.; Watanabe, Y.; Matsumura, Y.; Uchida, H. Effect of KOH pretreatment on the hydriding properties of LaNi2.5Co2.5 alloy. J. Alloys Compd. 1995, 231, 679–683.

[29]

Shen, Y.; Peng, F.; Kontos, S.; Noréus, D. Improved NiMH performance by a surface treatment that creates magnetic Ni-clusters. Int. J. Hydrogen Energy 2016, 41, 9933–9938.

[30]

Zhou, W. H.; Tang, Z. Y.; Zhu, D.; Ma, Z. W.; Wu, C. L.; Huang, L. W.; Chen, Y. G. Low-temperature and instantaneous high-rate output performance of AB5-type hydrogen storage alloy with duplex surface hot-alkali treatment. J. Alloys Compd. 2017, 692, 364–374.

[31]

Yanagimoto, K.; Majima, K.; Sunada, S.; Sawada, T. Effects of surface modification on surface structure and electrochemical properties of Mm(Ni, Co, Mn, Al)5.0 alloy powder. J. Alloys Compd. 2004, 377, 174–178.

[32]

Imoto, T.; Kato, K.; Higashiyama, N.; Kimoto, M.; Itoh, Y.; Nishio, K. Microstructure and electrochemical characteristics of surface-treated Mm(Ni-Co-Al-Mn)4.76 alloys for nickel-metal hydride batteries. J. Alloys Compd. 1999, 285, 272–278.

[33]

Sakashita, M.; Li, Z. P.; Suda, S. Fluorination mechanism and its effects on the electrochemical properties of metal hydrides. J. Alloys Compd. 1997, 253–254, 500–505

[34]

Zhao, X. Y.; Ma, L. Q.; Gao, Y. J.; Ding, Y.; Shen, X. D. Effect of surface treatments on microstructure and electrochemical properties of La-Ni-Al hydrogen storage alloy. Int. J. Hydrogen Energy 2009, 34, 1904–1909.

[35]

Han, Y. H.; Gai, S. L.; Ma, P. A.; Wang, L. Z.; Zhang, M. L.; Huang, S. H.; Yang, P. P. Highly uniform α-NaYF4:Yb/Er hollow microspheres and their application as drug carrier. Inorg. Chem. 2013, 52, 9184–9191.

[36]

Chen, M.; Tan, C.; Jiang, W. B.; Huang, J. L.; Min, D.; Liao, C. H.; Wang, H.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. Influence of over-stoichiometry on hydrogen storage and electrochemical properties of Sm-doped low-Co AB5-type alloys as negative electrode materials in nickel-metal hydride batteries. J. Alloys Compd. 2021, 867, 159111.

Nano Research
Pages 8819-8825
Cite this article:
Chen Z, Liu H, Nei J, et al. High-performance nickel metal hydride battery anode with enhanced durability and excellent low-temperature discharge capability. Nano Research, 2024, 17(10): 8819-8825. https://doi.org/10.1007/s12274-024-6742-y
Topics:
Part of a topical collection:

348

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 April 2024
Revised: 05 May 2024
Accepted: 06 May 2024
Published: 31 May 2024
© Tsinghua University Press 2024
Return