Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Wearable electronics powered by flexible energy storage devices have captured global attention. Under low-temperature conditions, unfortunately, solidification of flexible hydrogel electrolyte and decreased pseudo-capacity of these devices largely hamper their practical use. In this study, photothermally-active Prussian blue (PB) was introduced onto poly(3,4-ethylenedioxythiophene)/polyacrylamide (PEDOT/PAM) networks to address the challenges of electrolyte solidification and degraded pseudo-capacitance for flexible all-in-one device at low temperatures. The as-constructed PB/PEDOT/PAM hydrogel device delivers stable electrochemical performance and remarkable mechanical property with 1652% elongation. Importantly, this hydrogel device well retains its flexibility in cold environment with a freezing point below −30 °C. The incorporation of PB extends the voltage range to 1.5 V as a single device, thus significantly enhancing the electrochemical performance as an all-in-one integrated device. Benefitting from the outstanding photo-to-thermal conversion ability of embedded PB nanocubes, the temperature of the assembled all-in-one PB/PEDOT/PAM device increased from −20 to 17.7 °C after solar-light irradiation for only 5 min. Moreover, the degraded pseudo-capacitance was subsequently boosted to 287.1% of its original capacitance at −20 °C. This study establishes a connection between flexible all-solid-state hydrogel devices and photothermally enhanced pseudo-capacitors in freezing environments, thereby expanding the potential applications of multi-functional pseudo-capacitors.
Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074.
Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015, 6, 7461.
Zhao, J. H.; Wang, H. Q.; Cai, Y. H.; Zhao, J. J.; Gao, Z. D.; Song, Y. Y. The challenges and opportunities for TiO2 nanostructures in gas sensing. ACS Sens. 2024, 9, 1644–1655.
Wang, Z. P.; Cheng, J. L.; Zhou, J. W.; Zhang, J. X.; Huang, H.; Yang, J.; Li, Y. C.; Wang, B. All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety. Nano Energy 2018, 50, 106–117.
Chen, M. Z.; Zhang, Y. Y.; Xing, G. C.; Chou, S. L.; Tang, Y. X. Electrochemical energy storage devices working in extreme conditions. Energy Environ. Sci. 2021, 14, 3323–3351.
Korenblit, Y.; Kajdos, A.; West, W. C.; Smart, M. C.; Brandon, E. J.; Kvit, A.; Jagiello, J.; Yushin, G . In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures. Adv. Funct. Adv. Funct. Mater. 2012, 22, 1655–1662.
Yi, F.; Ren, H. Y.; Dai, K. R.; Wang, X. F.; Han, Y. Z.; Wang, K. X.; Li, K.; Guan, B. L.; Wang, J.; Tang, M. et al. Solar thermal-driven capacitance enhancement of supercapacitors. Energy Environ. Sci. 2018, 11, 2016–2024.
Gao, H. N.; Zhao, Z. G.; Cai, Y. D.; Zhou, J. J.; Hua, W. D.; Chen, L.; Wang, L.; Zhang, J. Q.; Han, D.; Liu, M. J. et al. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat. Commun. 2017, 8, 15911.
Rong, Q. F.; Lei, W. W.; Huang, J.; Liu, M. J. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv. Energy Mater. 2018, 8, 1801967.
Guo, J. L.; Liu, X.; Zhao, J. J.; Xu, H. J.; Gao, Z. D.; Wu, Z. Q.; Song, Y. Y. Rational design of mesoporous chiral MOFs as reactive pockets in nanochannels for enzyme-free identification of monosaccharide enantiomers. Chem. Sci. 2023, 14, 1742–1751.
Li, Z. W.; Chen, D. H.; An, Y. F.; Chen, C. L.; Wu, L. Y.; Chen, Z. J.; Sun, Y.; Zhang, X. G. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Stor. Mater. 2020, 28, 307–314.
Mo, F. N.; Liang, G. J.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci. 2019, 12, 706–715.
Xu, J.; Yuan, N. Y.; Razal, J. M.; Zheng, Y. P.; Zhou, X. S.; Ding, J. N.; Cho, K.; Ge, S. H.; Zhang, R. J.; Gogotsi, Y. et al. Temperature-independent capacitance of carbon-based supercapacitor from −100 to 60 °C. Energy Stor. Mater. 2019, 22, 323–329.
Wang, X.; Xu, J.; Razal, J. M.; Yuan, N. Y.; Zhou, X. S.; Wang, X. H.; Ding, J. N.; Qin, S.; Ge, S. H.; Gogotsi, Y. Unimpeded migration of ions in carbon electrodes with bimodal pores at an ultralow temperature of −100 °C. J. Mater. Chem. A 2019, 7, 16339–16346.
Huang, P. H.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53–56.
Tsai, W. Y.; Lin, R. Y.; Murali, S.; Zhang, L. L.; McDonough, J. K.; Ruoff, R. S.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy 2013, 2, 403–411.
Lu, Y. X.; Xu, J. W.; Zhao, C. X.; Gao, Z. D.; Song, Y. Y. Boosting the local temperature of hybrid prussian blue/NiO nanotubes by solar light: Effect on energy storage. ACS Sustainable Chem. Eng. 2021, 9, 11837–11846.
Long, L. Z.; Ding, Y. Y.; Liang, N. N.; Liu, J.; Liu, F. C.; Huang, S.; Meng, Y. Z. A carbon-free and free-standing cathode from mixed-phase TiO2 for photo-assisted Li-CO2 battery. Small 2023, 19, 2300519.
Xu, J. W.; Liang, C. C.; Gao, Z. D.; Song, Y. Y. Construction of nanoreactors on TiO2 nanotube arrays as a POCT device for sensitive colorimetric detection. Chin. Chem. Lett. 2023, 34, 107863.
Yang, L. L.; Feng, J. J.; Wang, J. N.; Gao, Z. D.; Xu, J. W.; Mei, Y.; Song, Y. Y. Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces. Chin. Chem. Lett. 2022, 33, 5169–5173.
Jin, X. T.; Song, L.; Yang, H. S.; Dai, C. L.; Xiao, Y. K.; Zhang, X. Q.; Han, Y. Y.; Bai, C. C.; Lu, B.; Liu, Q. W. et al. Stretchable supercapacitor at −30 °C. Energy Environ. Sci. 2021, 14, 3075–3085.
Ivanko, I.; Pánek, J.; Svoboda, J.; Zhigunov, A.; Tomšík, E. Tuning the photoluminescence and anisotropic structure of PEDOT. J. Mater. Chem. C 2019, 7, 7013–7019.
Fernandez-Martin, F.; Fernandez-Pierola, I.; Horta, A. Glass transition temperature and heat capacity of heterotacticlike PMMA. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1353–1363.
Nešpůrek, S.; Kuberský, P.; Polanský, R.; Trchová, M.; Šebera, J.; Sychrovský, V. Raman spectroscopy and DFT calculations of PEDOT: PSS in a dipolar field. Phys. Chem. Chem. Phys. 2022, 24, 541–550.
Xu, J. W.; Zhang, Y.; Zhai, T. T.; Kuang, Z. Y.; Li, J.; Wang, Y. M.; Gao, Z. D.; Song, Y. Y.; Xia, X. H. Electrochromic-tuned plasmonics for photothermal sterile window. ACS Nano 2018, 12, 6895–6903.
Liu, R. Q.; Liang, S. M.; Tang, X. Z.; Yan, D.; Li, X. F.; Yu, Z. Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 2012, 22, 14160–14167.
Ghosh, P.; Chakrabarti, A.; Siddhanta, S. K. Studies on stable aqueous polyaniline prepared with the use of polyacrylamide as the water soluble support polymer. Eur. Polym. J. 1999, 35, 803–813.
Liu, Y.; He, D. D.; Cheng, Y. J.; Li, L.; Lu, Z. S.; Liang, R.; Fan, Y. Y.; Qiao, Y.; Chou, S. L. A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian Blue nanocubics as cathode for high-performance sodium-ion battery. Small 2020, 16, 1906946.
Xu, J.; Qu, K. Z.; Zhao, J. J.; Jian, X. X.; Gao, Z. D.; Xu, J. W.; Song, Y. Y. In situ monitoring of the “point discharge” induced antibacterial process by the onsite formation of a Raman probe. Anal. Chem. 2020, 92, 2323–2330
Zhou, Z. Y.; Li, Q. L.; Yuan, L. Q.; Tang, L.; Wang, X. N.; He, B.; Man, P.; Li, C. W.; Xie, L. Y.; Lu, W. B. et al. Achieving ultrahigh-energy-density in flexible and lightweight all-solid-state internal asymmetric tandem 6.6 V all-in-one supercapacitors. Energy Stor. Mater. 2020, 25, 893–902.
Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.
Zhu, K. H.; Han, X. D.; Ye, S. F.; Cui, P. X.; Dou, L. Y.; Ma, W. B.; Heng-Sha; Tao, X. Y.; Wei, X. Y. Flexible all-in-one supercapacitors enabled by self-healing and anti-freezing polymer hydrogel electrolyte. J. Energy Storage 2022, 53, 105096.
Han, L.; Li, Y. Q.; Chen, C.; Liu, L. K.; Lu, Z. C. Multifunctional enhanced energy density of flexible wide-temperature supercapacitors based on MXene/PANI conductive hydrogel. Chem. Eng. J. 2024, 485, 149951.
Wang, X.; Wang, Y. M.; Liu, D. D.; Li, X. L.; Xiao, H. H.; Ma, Y.; Xu, M.; Yuan, G. H.; Chen, G. R. Opening MXene ion transport channels by intercalating PANI nanoparticles from the self-assembly approach for high volumetric and areal energy density supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 30633–30642.
Cao, S. Q.; Zhao, T. K.; Li, Y. T.; Yang, L.; Ahmad, A.; Jiang, T.; Shu, Y.; Jing, Z. M.; Luo, H. J.; Lu, X. F. et al. Fabrication of PANI@Ti3C2T x /PVA hydrogel composite as flexible supercapacitor electrode with good electrochemical performance. Ceram. Int. 2022, 48, 15721–15728.
Yuan, T.; Zhang, Z.; Liu, Q.; Liu, X. T.; Miao, Y. N.; Yao, C. L. MXene (Ti3C2T x )/cellulose nanofiber/polyaniline film as a highly conductive and flexible electrode material for supercapacitors. Carbohydr. Polym. 2023, 304, 120519.
Chen, Z. X.; Wang, Y. K.; Han, J. Y.; Wang, T. Q.; Leng, Y. X.; Wang, Y. M.; Li, T. X.; Han, Y. Q. Preparation of polyaniline onto dl-tartaric acid assembled MXene surface as an electrode material for supercapacitors. ACS Appl. Energy Mater. 2020, 3, 9326–9336.
Nguyen, P. T.; Jang, J.; Lee, Y.; Choi, S. T.; In, J. B. Laser-assisted fabrication of flexible monofilament fiber supercapacitors. J. Mater. Chem. A 2021, 9, 4841–4850.
Liu, L. X.; Weng, Q. H.; Lu, X. Y.; Sun, X. L.; Zhang, L.; Schmidt, O. G. Advances on microsized on-chip lithium-ion batteries. Small 2017, 13, 1701847.
Chen, G. Q.; Hu, O. D.; Lu, J.; Gu, J. F.; Chen, K.; Huang, J. R.; Hou, L. X.; Jiang, X. C. Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor. Chem. Eng. J. 2021, 425, 131505.
Han, M. M.; Wang, X. Y.; Chen, C.; Zou, M. C.; Niu, Z. Q.; Yang, Q. H.; Cao, A. Y.; Song, L.; Chen, J.; Xie, S. S. All-solid-state supercapacitors with superior compressive strength and volumetric capacitance. Energy Stor. Mater. 2018, 13, 119–126.
Li, L.; Zhang, Y.; Lu, H. Y.; Wang, Y. F.; Xu, J. S.; Zhu, J. X.; Zhang, C.; Liu, T. X. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 2020, 11, 62.
Zhang, H. X.; Niu, W. B.; Zhang, S. F. Extremely stretchable, sticky and conductive double-network ionic hydrogel for ultra-stretchable and compressible supercapacitors. Chem. Eng. J. 2020, 387, 124105.
Ren, Y. F.; Liu, Y. L.; Wang, S. Y.; Wang, Q.; Li, S. H.; Wang, W. J.; Dong, X. C. Stretchable supercapacitor based on a hierarchical PPy/CNT electrode and hybrid hydrogel electrolyte with a wide operating temperature. Carbon Energy 2022, 4, 527–538.
Liu, Q.; Zhao, A. R.; He, X. X.; Li, Q.; Sun, J.; Lei, Z. B.; Liu, Z. H. Full-temperature all-solid-state Ti3C2T x /aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility. Adv. Funct. Mater. 2021, 31, 2010944.
Lv, Z. S.; Wang, C. X.; Wan, C. J.; Wang, R. H.; Dai, X. Y.; Wei, J. Q.; Xia, H. R.; Li, W. L.; Zhang, W.; Cao, S. K. et al. Strain-driven auto-detachable patterning of flexible electrodes. Adv. Mater. 2022, 34, 2202877.
Han, J. K.; Yang, J. K.; Gao, W. W.; Bai, H. Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 2021, 31, 2010155.
Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.
Yang, J. Y.; Cao, Q. H.; Tang, X. W.; Du, J. J.; Yu, T.; Xu, X.; Cai, D. M.; Guan, C.; Huang, W. 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 2021, 9, 19649–19658.
Wang, Z. B.; Wu, Y. G.; Zhu, B.; Chen, Q. X.; Zhang, Y.; Xu, Z. J.; Sun, D. H.; Lin, L. W.; Wu, D. Z. Self-patterning of highly stretchable and electrically conductive liquid metal conductors by direct-write super-hydrophilic laser-induced graphene and electroless copper plating. ACS Appl. Mater. Interfaces 2023, 15, 4713–4723.
Mu, H. C.; Wang, W. Q.; Yang, L. F.; Chen, J.; Li, X. W.; Yuan, Y. Z.; Tian, X. H.; Wang, G. C. Fully integrated design of intrinsically stretchable electrodes for stretchable supercapacitors. Energy Stor. Mater. 2021, 39, 130–138.