AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Cauliflower-like Ni3S2 foam for ultrastable oxygen evolution electrocatalysis in alkaline seawater

Qiuying Dai1Xun He1Yongchao Yao1Kai Dong1Xuwei Liu1Xiankun Guo1Jie Chen1Xiaoya Fan1Dongdong Zheng2Yongsong Luo2Shengjun Sun2Luming Li3Wei Chu3Asmaa Farouk4Mohamed S. Hamdy4Xuping Sun1,2,5( )Bo Tang2,6( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia
Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
Laoshan Laboratory, Qingdao 266237, China
Show Author Information

Graphical Abstract

A three-dimensional (3D) porous cauliflower-like Ni3S2 foam on Ni foam acts as an effective electrocatalyst for alkaline seawater oxidation, achieving a current density of 100 mA·cm−2 at just 369 mV overpotential, and demonstrates a robust 1000-h endurance in alkaline seawater oxidation.

Abstract

It is of great importance to design and develop electrocatalysts that are both long-lasting and efficient for seawater oxidation. Herein, a three-dimensional porous cauliflower-like Ni3S2 foam on Ni foam (Ni3S2 foam/NF) is proposed as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline seawater. The as-synthesis Ni3S2 foam/NF achieves exceptional efficacy, achieving a current density of 100 mA·cm−2 at mere overpotential of 369 mV. Notably, its electrocatalytic stability extends up to 1000 h at 500 mA·cm−2.

Electronic Supplementary Material

Download File(s)
6744_ESM.pdf (3.8 MB)

References

[1]

Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326–1330.

[2]

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[3]

Jin, H. Y.; Yu, H. M.; Li, H. B.; Davey, K.; Song, T.; Paik, U.; Qiao, S. Z. MXene analogue: A 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem., Int. Ed. 2022, 61, e202203850.

[4]

Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

[5]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[6]

Wu, Q.; Gao, Q. P.; Wang, X. P.; Qi, Y. P.; Shen, L.; Tai, X. S.; Yang, F.; He, X.; Wang, Y.; Yao, Y. C. et al. Boosting electrocatalytic performance via electronic structure regulation for acidic oxygen evolution. iScience 2024, 27, 108738.

[7]

Liu, H.; Zhang, Z.; Fang, J. J.; Li, M. X.; Sendeku, M. G.; Wang, X.; Wu, H. Y.; Li, Y. P.; Ge, J. J.; Zhuang, Z. B. et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. Joule 2023, 7, 558–573.

[8]

He, Q. Y.; Han, L.; Tao, K. Oxygen vacancy modulated Fe-doped Co3O4 hollow nanosheet arrays for efficient oxygen evolution reaction. Chem. Commun. 2024, 60, 1116–1119.

[9]

Liang, J.; Li, Z. X.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Cai, Z. W. et al. Electrocatalytic seawater splitting: Nice designs, advanced strategies, challenges and perspectives. Mater. Today 2023, 69, 193–235.

[10]

Guo, J. X.; Zheng, Y.; Hu, Z. P.; Zheng, C. Y.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272.

[11]

Guo, L. L.; Yu, Q. P.; Zhai, X. J.; Chi, J. Q.; Cui, T.; Zhang, Y.; Lai, J. P.; Wang, L. Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Res. 2022, 15, 8846–8856.

[12]

Liang, J.; Cai, Z. W.; Li, Z. X.; Yao, Y. C.; Luo, Y. S.; Sun, S. J.; Zheng, D. D.; Liu, Q.; Sun, X. P.; Tang, B. Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities. Nat. Commun. 2024, 15, 2950.

[13]

Yao, Y. C.; Yang, C. X.; Sun, S. J.; Zhang, H.; Geng, M. Q.; He, X.; Dong, K.; Luo, Y. L.; Zheng, D. D.; Zhuang, W. H. et al. Boosting alkaline seawater oxidation of CoFe-layered double hydroxide nanosheet array by Cr doping. Small 2024, 20, 2307294.

[14]

Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498.

[15]

Dong, J. T.; Yu, C.; Wang, H.; Chen, L.; Huang, H. L.; Han, Y. N.; Wei, Q. B.; Qiu, J. S. A robust & weak-nucleophilicity electrocatalyst with an inert response for chlorine ion oxidation in large-current seawater electrolysis. J. Energy Chem. 2024, 90, 486–495.

[16]

Li, Z. X.; Yao, Y. C.; Sun, S. J.; Liang, J.; Hong, S. H.; Zhang, H.; Yang, C. X.; Zhang, X. F.; Cai, Z. W.; Li, J. et al. Carbon oxyanion self-transformation on NiFe oxalates enables long-term ampere-level current density seawater oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316522.

[17]

Yao, Y. C.; Sun, S. J.; Zhang, H.; Li, Z. X.; Yang, C. X.; Cai, Z. W.; He, X.; Dong, K.; Luo, Y. L.; Wang, Y. et al. Enhancing the stability of NiFe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping. J. Energy Chem. 2024, 91, 306–312.

[18]

Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.

[19]

Tang, J.; Sun, S. J.; He, X.; Zhang, H.; Yang, C. X.; Zhang, M.; Yue, M.; Wang, H. F.; Sun, Y. T.; Luo, Y. L. et al. An amorphous FeMoO4 nanorod array enabled high-efficiency oxygen evolution electrocatalysis in alkaline seawater. Nano Res. 2024, 17, 2270–2275.

[20]

Yue, M.; He, X.; Sun, S. J.; Sun, Y. T.; Hamdy, M. S.; Benaissa, M.; Salih, A. A. M.; Liu, J.; Sun, X. P. Co-doped Ni3S2 nanosheet array: A high-efficiency electrocatalyst for alkaline seawater oxidation. Nano Res. 2024, 17, 1050–1055.

[21]

Yu, Y. H.; Chen, X. W.; Li, J.; Xiao, Y. T.; Shi, X. M.; Rao, P.; Deng, P. L.; Wen, H.; Tian, X. L. Ni-based heterostructure with protective phosphide layer to enhance the oxygen evolution reaction for the seawater electrolysis. Int. J. Hydrogen Energy 2024, 51, 1373–1380.

[22]

Liu, J. Y.; Liu, X.; Shi, H.; Luo, J. H.; Wang, L.; Liang, J. S.; Li, S. Z.; Yang, L. M.; Wang, T. Y.; Huang, Y. H. et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl. Catal. B: Environ. 2022, 302, 120862.

[23]

Li, J. Y.; Li, Y. F.; Xue, Q. Y.; Gao, Y. C.; Ma, Y. Y. Phytate-coordination triggered enrichment of surface NiOOH species on nickel foam for efficient urea electrooxidation. Chin. J. Struct. Chem. 2022, 41, 2207035–2207039.

[24]

Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem., Int. Ed. 2021, 60, 22740–22744.

[25]

Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

[26]

Zhong, B.; Cheng, B.; Zhu, Y. B.; Ding, R.; Kuang, P. Y.; Yu, J. G. Hierarchically porous nickel foam supported Fe-Ni3S2 electrode for high-current-density alkaline water splitting. J. Colloid Interface Sci. 2023, 629, 846–853.

[27]

Liu, H.; Liu, D. Z.; Cheng, X.; Hua, Z. S.; He, S. W. One-step electrodeposition of Ni-Mo electrode with column-pyramid hierarchical structure for highly-efficient hydrogen evolution. Mater. Des. 2022, 224, 111427.

[28]

Liu, M. H.; Wang, J. Y.; Wu, H. L.; Li, S.; Shi, Y. X.; Cai, N. S. Construction of an electrode with hierarchical three-dimensional NiFe-oxyhydroxides by two-step electrodeposition for large-current oxygen evolution reaction. Int. J. Hydrogen Energy 2024, 51, 626–637.

[29]

Wang, J.; Shao, H. T.; Ren, S. R.; Hu, A. M.; Li, M. Fabrication of porous Ni-Co catalytic electrode with high performance in hydrogen evolution reaction. Appl. Surf. Sci. 2021, 539, 148045.

[30]

Teng, X. A.; Wang, Z. B.; Wu, Y. S.; Zhang, Y.; Yuan, B.; Xu, Y. Y.; Wang, R. M.; Shan, A. X. Enhanced alkaline hydrogen evolution reaction of MoO2/Ni3S2 nanorod arrays by interface engineering. Nano Energy 2024, 122, 109299.

[31]

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

[32]

He, X.; Li, X. H.; Fan, X. Y.; Li, J.; Zhao, D. L.; Zhang, L. C.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Xie, L. S. et al. Ambient electroreduction of nitrite to ammonia over Ni nanoparticle supported on molasses-derived carbon sheets. ACS Appl. Nano Mater. 2022, 5, 14246–14250.

[33]

Zeng, X. J.; Zhang, H. Q.; Yu, R. H.; Stucky, G. D.; Qiu, J. S. A phase and interface co-engineered MoP x S y @NiFeP x S y @NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction. J. Mater. Chem. A 2023, 11, 14272–14283.

[34]

He, X.; Hu, L.; Xie, L. S.; Li, Z. R.; Chen, J.; Li, X. H.; Li, J.; Zhang, L. C.; Fang, X. D.; Zheng, D. D. et al. Ambient ammonia synthesis via nitrite electroreduction over NiS2 nanoparticles-decorated TiO2 nanoribbon array. J. Colloid Interface Sci. 2023, 634, 86–92.

[35]

Jiang, M. Q.; Li, L.; Fu, L. K.; Zuo, Y. G.; Wang, S. X.; Zhang, L. B.; Zhang, G. W. Scalable room-temperature synthesis of NiFe oxyhydroxide tailored with S atoms for enhanced oxygen evolution in alkaline seawater and domestic sewage. Int. J. Hydrogen Energy 2024, 51, 31–43.

[36]

Vos, J. G.; Koper, M. T. M. Measurement of competition between oxygen evolution and chlorine evolution using rotating ring-disk electrode voltammetry. J. Electroanal. Chem. 2018, 819, 260–268.

[37]

Zhang, L. C.; Liang, J.; He, X.; Yang, Q.; Luo, Y. S.; Zheng, D. D.; Sun, S. J.; Zhang, J.; Yan, H.; Ying, B. W. et al. Integrating RuO2@TiO2 catalyzed electrochemical chlorine evolution with a NO oxidation reaction for nitrate synthesis. Inorg. Chem. Front. 2023, 10, 2100–2106.

Nano Research
Pages 6820-6825
Cite this article:
Dai Q, He X, Yao Y, et al. Cauliflower-like Ni3S2 foam for ultrastable oxygen evolution electrocatalysis in alkaline seawater. Nano Research, 2024, 17(8): 6820-6825. https://doi.org/10.1007/s12274-024-6744-9
Topics:

477

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 21 February 2024
Revised: 29 April 2024
Accepted: 07 May 2024
Published: 31 May 2024
© Tsinghua University Press 2024
Return