It is of great importance to design and develop electrocatalysts that are both long-lasting and efficient for seawater oxidation. Herein, a three-dimensional porous cauliflower-like Ni3S2 foam on Ni foam (Ni3S2 foam/NF) is proposed as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline seawater. The as-synthesis Ni3S2 foam/NF achieves exceptional efficacy, achieving a current density of 100 mA·cm−2 at mere overpotential of 369 mV. Notably, its electrocatalytic stability extends up to 1000 h at 500 mA·cm−2.
Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326–1330.
Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.
Jin, H. Y.; Yu, H. M.; Li, H. B.; Davey, K.; Song, T.; Paik, U.; Qiao, S. Z. MXene analogue: A 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem., Int. Ed. 2022, 61, e202203850.
Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.
Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.
Wu, Q.; Gao, Q. P.; Wang, X. P.; Qi, Y. P.; Shen, L.; Tai, X. S.; Yang, F.; He, X.; Wang, Y.; Yao, Y. C. et al. Boosting electrocatalytic performance via electronic structure regulation for acidic oxygen evolution. iScience 2024, 27, 108738.
Liu, H.; Zhang, Z.; Fang, J. J.; Li, M. X.; Sendeku, M. G.; Wang, X.; Wu, H. Y.; Li, Y. P.; Ge, J. J.; Zhuang, Z. B. et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. Joule 2023, 7, 558–573.
He, Q. Y.; Han, L.; Tao, K. Oxygen vacancy modulated Fe-doped Co3O4 hollow nanosheet arrays for efficient oxygen evolution reaction. Chem. Commun. 2024, 60, 1116–1119.
Liang, J.; Li, Z. X.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Cai, Z. W. et al. Electrocatalytic seawater splitting: Nice designs, advanced strategies, challenges and perspectives. Mater. Today 2023, 69, 193–235.
Guo, J. X.; Zheng, Y.; Hu, Z. P.; Zheng, C. Y.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272.
Guo, L. L.; Yu, Q. P.; Zhai, X. J.; Chi, J. Q.; Cui, T.; Zhang, Y.; Lai, J. P.; Wang, L. Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Res. 2022, 15, 8846–8856.
Liang, J.; Cai, Z. W.; Li, Z. X.; Yao, Y. C.; Luo, Y. S.; Sun, S. J.; Zheng, D. D.; Liu, Q.; Sun, X. P.; Tang, B. Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities. Nat. Commun. 2024, 15, 2950.
Yao, Y. C.; Yang, C. X.; Sun, S. J.; Zhang, H.; Geng, M. Q.; He, X.; Dong, K.; Luo, Y. L.; Zheng, D. D.; Zhuang, W. H. et al. Boosting alkaline seawater oxidation of CoFe-layered double hydroxide nanosheet array by Cr doping. Small 2024, 20, 2307294.
Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498.
Dong, J. T.; Yu, C.; Wang, H.; Chen, L.; Huang, H. L.; Han, Y. N.; Wei, Q. B.; Qiu, J. S. A robust & weak-nucleophilicity electrocatalyst with an inert response for chlorine ion oxidation in large-current seawater electrolysis. J. Energy Chem. 2024, 90, 486–495.
Li, Z. X.; Yao, Y. C.; Sun, S. J.; Liang, J.; Hong, S. H.; Zhang, H.; Yang, C. X.; Zhang, X. F.; Cai, Z. W.; Li, J. et al. Carbon oxyanion self-transformation on NiFe oxalates enables long-term ampere-level current density seawater oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316522.
Yao, Y. C.; Sun, S. J.; Zhang, H.; Li, Z. X.; Yang, C. X.; Cai, Z. W.; He, X.; Dong, K.; Luo, Y. L.; Wang, Y. et al. Enhancing the stability of NiFe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping. J. Energy Chem. 2024, 91, 306–312.
Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.
Tang, J.; Sun, S. J.; He, X.; Zhang, H.; Yang, C. X.; Zhang, M.; Yue, M.; Wang, H. F.; Sun, Y. T.; Luo, Y. L. et al. An amorphous FeMoO4 nanorod array enabled high-efficiency oxygen evolution electrocatalysis in alkaline seawater. Nano Res. 2024, 17, 2270–2275.
Yue, M.; He, X.; Sun, S. J.; Sun, Y. T.; Hamdy, M. S.; Benaissa, M.; Salih, A. A. M.; Liu, J.; Sun, X. P. Co-doped Ni3S2 nanosheet array: A high-efficiency electrocatalyst for alkaline seawater oxidation. Nano Res. 2024, 17, 1050–1055.
Yu, Y. H.; Chen, X. W.; Li, J.; Xiao, Y. T.; Shi, X. M.; Rao, P.; Deng, P. L.; Wen, H.; Tian, X. L. Ni-based heterostructure with protective phosphide layer to enhance the oxygen evolution reaction for the seawater electrolysis. Int. J. Hydrogen Energy 2024, 51, 1373–1380.
Liu, J. Y.; Liu, X.; Shi, H.; Luo, J. H.; Wang, L.; Liang, J. S.; Li, S. Z.; Yang, L. M.; Wang, T. Y.; Huang, Y. H. et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl. Catal. B: Environ. 2022, 302, 120862.
Li, J. Y.; Li, Y. F.; Xue, Q. Y.; Gao, Y. C.; Ma, Y. Y. Phytate-coordination triggered enrichment of surface NiOOH species on nickel foam for efficient urea electrooxidation. Chin. J. Struct. Chem. 2022, 41, 2207035–2207039.
Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem., Int. Ed. 2021, 60, 22740–22744.
Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.
Zhong, B.; Cheng, B.; Zhu, Y. B.; Ding, R.; Kuang, P. Y.; Yu, J. G. Hierarchically porous nickel foam supported Fe-Ni3S2 electrode for high-current-density alkaline water splitting. J. Colloid Interface Sci. 2023, 629, 846–853.
Liu, H.; Liu, D. Z.; Cheng, X.; Hua, Z. S.; He, S. W. One-step electrodeposition of Ni-Mo electrode with column-pyramid hierarchical structure for highly-efficient hydrogen evolution. Mater. Des. 2022, 224, 111427.
Liu, M. H.; Wang, J. Y.; Wu, H. L.; Li, S.; Shi, Y. X.; Cai, N. S. Construction of an electrode with hierarchical three-dimensional NiFe-oxyhydroxides by two-step electrodeposition for large-current oxygen evolution reaction. Int. J. Hydrogen Energy 2024, 51, 626–637.
Wang, J.; Shao, H. T.; Ren, S. R.; Hu, A. M.; Li, M. Fabrication of porous Ni-Co catalytic electrode with high performance in hydrogen evolution reaction. Appl. Surf. Sci. 2021, 539, 148045.
Teng, X. A.; Wang, Z. B.; Wu, Y. S.; Zhang, Y.; Yuan, B.; Xu, Y. Y.; Wang, R. M.; Shan, A. X. Enhanced alkaline hydrogen evolution reaction of MoO2/Ni3S2 nanorod arrays by interface engineering. Nano Energy 2024, 122, 109299.
Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.
He, X.; Li, X. H.; Fan, X. Y.; Li, J.; Zhao, D. L.; Zhang, L. C.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Xie, L. S. et al. Ambient electroreduction of nitrite to ammonia over Ni nanoparticle supported on molasses-derived carbon sheets. ACS Appl. Nano Mater. 2022, 5, 14246–14250.
Zeng, X. J.; Zhang, H. Q.; Yu, R. H.; Stucky, G. D.; Qiu, J. S. A phase and interface co-engineered MoP x S y @NiFeP x S y @NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction. J. Mater. Chem. A 2023, 11, 14272–14283.
He, X.; Hu, L.; Xie, L. S.; Li, Z. R.; Chen, J.; Li, X. H.; Li, J.; Zhang, L. C.; Fang, X. D.; Zheng, D. D. et al. Ambient ammonia synthesis via nitrite electroreduction over NiS2 nanoparticles-decorated TiO2 nanoribbon array. J. Colloid Interface Sci. 2023, 634, 86–92.
Jiang, M. Q.; Li, L.; Fu, L. K.; Zuo, Y. G.; Wang, S. X.; Zhang, L. B.; Zhang, G. W. Scalable room-temperature synthesis of NiFe oxyhydroxide tailored with S atoms for enhanced oxygen evolution in alkaline seawater and domestic sewage. Int. J. Hydrogen Energy 2024, 51, 31–43.
Vos, J. G.; Koper, M. T. M. Measurement of competition between oxygen evolution and chlorine evolution using rotating ring-disk electrode voltammetry. J. Electroanal. Chem. 2018, 819, 260–268.
Zhang, L. C.; Liang, J.; He, X.; Yang, Q.; Luo, Y. S.; Zheng, D. D.; Sun, S. J.; Zhang, J.; Yan, H.; Ying, B. W. et al. Integrating RuO2@TiO2 catalyzed electrochemical chlorine evolution with a NO oxidation reaction for nitrate synthesis. Inorg. Chem. Front. 2023, 10, 2100–2106.