AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multidimensional hollow SiO2/C nanofibers modified by magnetic nanocrystals for electromagnetic energy conversion and lithium battery storage

Chen Han1,§Qi Zheng2,§Juncheng Jin1Jiajia Zhang1Wen-Qiang Cao2( )Kun Xiang1( )Min Zhang3( )Mao-Sheng Cao2( )
Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, College of Materials and Chemical Engineering, West Anhui University, Lu’an 237012, China
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Department of Physics, Beijing Technology and Business University, Beijing 100048, China

§ Chen Han and Qi Zheng contributed equally to this work.

Show Author Information

Graphical Abstract

The multidimensional hollow SiO2/C nanofibers modified by magnetic nanocrystals possess multi-functions including microwave absorption, electromagnetic interference shielding, electromagnetic energy conversion and lithium-ion storage.

Abstract

Multifunctional materials are powerful tools to support the advancement of energy conversion devices. Materials with prominent electromagnetic and electrochemical properties can realize the conversion of electromagnetic energy and solve the subsequent storage issues. Herein, an electrospinning-thermal reduction method is employed to construct ultrafine nickel nanoparticle modified porous SiO2/C (Ni-SiO2/C) hollow nanofibers as promising materials for applications in both electromagnetic wave absorption (EMA) and lithium-ion storage. Impressively, when used as an EMA material, the reflection loss (RL) of Ni-SiO2/C can reach −47.8 dB at 15.8 GHz with a matching thickness of 2.2 mm. Its excellent microwave absorption performance can be attributed to the enhanced conduction loss, polarization relaxation, synergistic magnetic loss, and preferred impedance matching, which result from multi-component magnetic/dielectric synergy and the unique interconnected multidimensional hollow structure. Furthermore, the electronic conductivity and electrochemical activity of the samples are significantly enhanced due to the uniform distribution of ultrafine Ni nanoparticles in the amorphous SiO2/C matrix. Meanwhile, the hierarchical hollow porous structure provides sufficient free space for volume change during lithiation/delithiation cycles. Accordingly, the Ni-SiO2/C nanocomposite exhibits a high reversible capacity of 917.6 mAh·g−1 at 0.1 A·g−1. At a high current density of 2 A·g−1, a capacity of 563.9 mAh·g−1 can be maintained after 300 cycles. An energy conversion-storage device is designed to store waste electromagnetic energy in the form of useful electrical energy. This work inspires the development of high-performance bifunctional materials.

Electronic Supplementary Material

Download File(s)
6746_ESM.pdf (993.7 KB)

References

[1]

Xia, Y. X.; Gao, W. W.; Gao, C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption. Adv. Funct. Mater. 2022, 32, 2204591.

[2]

Liu, Q.; Zhang, Y.; Liu, Y. B.; Li, C. M.; Liu, Z. X.; Zhang, B. L.; Zhang, Q. Y. Magnetic field-induced strategy for synergistic CI/Ti3C2T x /PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance. J. Mater. Sci. Technol. 2022, 110, 246–259.

[3]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

[4]

Liu, J.; Tao, J. Q.; Gao, L. L.; He, X. X.; Wei, B.; Gu, Y. S.; Yao, Z. J.; Zhou, J. T. Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption. Chem. Eng. J. 2022, 433, 134484.

[5]

Liu, T. T.; Cao, M. Q.; Fang, Y. S.; Zhu, Y. H.; Cao, M. S. Green building materials lit up by electromagnetic absorption function: A review. J. Mater. Sci. Technol. 2022, 112, 329–344.

[6]

Zhao, T. B.; Zheng, T. T.; Lan, D.; Zhang, Y.; Sun, Z. S.; Wang, C.; Jia, Z. R.; Wu, G. L. Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption. Nano Res. 2024, 17, 1625–1635

[7]

Luo, W.; Wang, M. Y.; Wang, K. J.; Yan, P.; Huang, J. L.; Gao, J.; Zhao, T.; Ding, Q.; Qiu, P. P.; Wang, H. F. et al. A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv. Sci. (Weinh.) 2022, 9, 2104163.

[8]

Han, C.; Zhang, M.; Cao, W. Q.; Cao, M. S. Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption. Carbon 2021, 171, 953–962.

[9]

Shen, Y. Q.; Zhang, F.; Zhang, Y. C.; Song, P. F.; Gao, F.; Zhang, D.; Liu, C. L.; Ma, J. Q.; Feng, H. X.; Du, X. Y. Space-confined fabrication of hydrophobic magnetic carbon nanofibers for lightweight and enhanced microwave absorption. Carbon 2022, 197, 544–554.

[10]

Zhang, K. L.; Zhang, J. Y.; Hou, Z. L.; Bi, S.; Zhao, Q. L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617.

[11]

Hu, Q. M.; Yang, R. L.; Mo, Z. C.; Lu, D. W.; Yang, L. L.; He, Z. F.; Zhu, H.; Tang, Z. K.; Gui, X. C. Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon 2019, 153, 737–744.

[12]

Zhang, M.; Han, C.; Cao, W. Q.; Cao, M. S.; Yang, H. J.; Yuan, J. A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 2021, 13, 27.

[13]
Zhang, Y. F.; Zhang, L.; Zhou, B. Q.; Gao, Y. S.; Zhang, B. L. Polarization-driven multifunctional organohydrogels with strain sensitivity toward electromagnetic wave absorption. Nano Res. 2024, 17, 5688–5697.
[14]

Zhang, S. J.; Lan, D.; Chen, X. L.; Gu, Y. Y.; Ren, J. W.; Du, S. X.; Cai, S. C.; Zhao, X. M.; Zhao, Z. W.; Wu, G. L. Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities. Nano Res. 2024, 17, 1952–1983.

[15]

Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. One-dimensional metallic, magnetic, and dielectric nanomaterials-based composites for electromagnetic wave interference shielding. Nano Res. 2022, 15, 9595–9613.

[16]

Guo, R.; Fan, Y. C.; Wang, L. J.; Jiang, W. Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber. Carbon 2020, 169, 214–224.

[17]

Wang, B. L.; Fu, Y. G.; Li, J.; Liu, T. Yolk-shelled Co@SiO2@Mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption. J. Colloid Interface Sci. 2022, 607, 1540–1550.

[18]

Zhou, P. P.; Zhang, J.; Zhu, H. L.; Wang, L. X.; Wang, X. K.; Song, Z.; Zhang, Q. T.; Yu, M. X.; Liu, Z. H.; Xu, T. et al. Silica-modified ordered mesoporous carbon for optimized impedance-matching characteristic enabling lightweight and effective microwave absorbers. ACS Appl. Mater. Interfaces 2020, 12, 23252–23260.

[19]

Li, Q. S.; Zhu, J. J.; Wang, S. N.; Huang, F.; Liu, Q. C.; Kong, X. K. Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon 2020, 161, 639–646.

[20]

Yue, J. W.; Feng, Y. Y.; Qin, M. M.; Feng, W. Carbon-based materials with combined functions of thermal management and electromagnetic protection: Preparation, mechanisms, properties, and applications. Nano Res. 2024, 17, 883–903.

[21]

Liu, H.; Li, X. Q.; Zhao, X. Y.; Zhang, M.; Liu, X. H.; Yang, S. C.; Wu, H. J.; Ma, Z. H. Large annular dipoles bounded between single-atom Co and Co cluster for clarifying electromagnetic wave absorbing mechanism. Adv. Funct. Mater. 2023, 33, 2304442.

[22]

Zhang, M.; Zheng, Q.; Cao, M. S.; Han, C. Regulating long-range travelling electrons for simultaneous electromagnetic absorption and interference shielding of Co@C nanofibers. Carbon 2023, 214, 118338.

[23]

Gao, J.; Ma, Z. J.; Liu, F. L.; Weng, X. Y.; Meng, K. Y. Preparation and microwave absorption properties of Gd-Co ferrite@silica@carbon multilayer core–shell structure composites. Chem. Eng. J. 2022, 446, 137157.

[24]

Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Zhang, X.; Shi, Y. Y.; Lu, W. Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant and thermal management functions. J. Mater. Chem. A 2021, 9, 17538–17552.

[25]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk-shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[26]

Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2621.

[27]

Zhou, P. P.; Wang, X. K.; Song, Z.; Wang, M.; Huang, W. T.; Yu, M. X.; Wang, L. X.; Zhang, Q. T. Multi-dimensional ordered mesoporous carbon/silica@Ni composite with hierarchical nanostructure for strong and broadband microwave absorption. Carbon 2021, 176, 209–218.

[28]

Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.

[29]

Quan, B.; Chen, Y.; Wang, Y.; Lu, X. C.; Guo, T. C.; Zhang, M. J.; Huang, X. G. Synergistically enhanced flexibility, mechanical strength and microwave absorption performances of TPE-based hybrid films via thermally assisted homogeneous separation technology. Carbon 2023, 206, 392–401.

[30]

Wang, C. Y.; Liu, T.; Yang, X. G.; Ge, S. H.; Stanley, N. V.; Rountree, E. S.; Leng, Y. J.; McCarthy, B. D. Fast charging of energy-dense lithium-ion batteries. Nature 2022, 611, 485–490.

[31]

Yao, L. H.; Cao, W. Q.; Zhao, J. G.; Zheng, Q.; Wang, Y. C.; Jiang, S.; Pan, Q. L.; Song, J.; Zhu, Y. Q.; Cao, M. S. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J. Mater. Sci. Technol. 2022, 127, 48–60.

[32]

Ma, Y. B.; Wang, K.; Xu, Y. N.; Zhang, X. D.; Peng, Q. F.; Li, S. N.; Zhang, X.; Sun, X. Z.; Ma, Y. W. Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors. Carbon 2023, 202, 175–185.

[33]

Xiao, S. S.; Zhou, X. G.; Chen, Y.; Hou, W. J.; Li, Y. Q.; Bi, F.; Zhao, L.; Li, Y. G.; Wang, L. Y.; Gai, G. Q. High-performance aqueous potassium ion asymmetric supercapacitors based on tunable 2D transition metal oxides. J. Power Sources 2022, 551, 232201.

[34]

Huang, Y. E.; Lin, W. L.; Shi, C. G.; Li, L.; Chen, Z. X.; Huang, X. Y.; Wu, X. H.; Du, K. Z. Constructing van der waals heterostructural sulfides PbTiS3 of reversible conversion-alloying mechanism for superior electrochemical lithium storage. Carbon 2021, 185, 334–341.

[35]

Imtiaz, S.; Amiinu, I. S.; Xu, Y.; Kennedy, T.; Blackman, C.; Ryan, K. M. Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater. Today 2021, 48, 241–269.

[36]

Li, X.; Zhang, S. J.; Du, J.; Liu, L. L.; Mao, C.; Sun, J.; Chen, A. B. Strong interaction between phosphorus and wrinkle carbon sphere promote the performance of phosphorus anode material for lithium-ion batteries. Nano Res. 2023, 16, 9273–9279.

[37]

Zhao, W. B.; Zhao, C. H.; Wu, H.; Li, L. J.; Zhang, C. C. Progress, challenge and perspective of graphite-based anode materials for lithium batteries: A review. J Energy Storage 2024, 81, 110409.

[38]

Liu, H. B.; Sun, Q.; Zhang, H. Q.; Cheng, J.; Li, Y. Y.; Zeng, Z.; Zhang, S.; Xu, X.; Ji, F. J.; Li, D. P. et al. The application road of silicon-based anode in lithium-ion batteries: From liquid electrolyte to solid-state electrolyte. Energy Storage Mater. 2023, 55, 244–263.

[39]

Yang, B. Y.; Liu, F.; Liu, Y. X.; Dong, J. Y.; Liu, M. H.; Wang, S.; Zhang, L. Self-assembled three-dimensional Si/carbon frameworks as promising lithium-ion battery anode. J. Power Sources 2023, 553, 232274.

[40]

Ashuri, M.; He, Q. R.; Shaw, L. L. Silicon oxides for Li-ion battery anode applications: Toward long-term cycling stability. J. Power Sources 2023, 559, 232660.

[41]

Gao, B.; Sinha, S.; Fleming, L.; Zhou, O. Alloy formation in nanostructured silicon. 3.0.CO;2-P">Adv. Mater. 2001, 13, 816–819.

[42]

Nita, C.; Fullenwarth, J.; Monconduit, L.; Le Meins, J.; Fioux, P.; Parmentier, J.; Ghimbeu, C. M. Eco-friendly synthesis of SiO2 nanoparticles confined in hard carbon: A promising material with unexpected mechanism for Li-ion batteries. Carbon 2019, 143, 598–609.

[43]

Chen, Q. J.; Tan, L.; Wang, S. T.; Liu, B. B.; Peng, Q. W.; Luo, H. Q.; Jiang, P. H.; Tang, H.; Sun, R. G. A facile synthesis of phosphorus doped Si/SiO2/C with high coulombic efficiency and good stability as an anode material for lithium ion batteries. Electrochim. Acta 2021, 385, 138385.

[44]

Liu, T.; Qu, Y. H.; Liu, J. H.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Core–shell structured C@SiO2 hollow spheres decorated with nickel nanoparticles as anode materials for lithium-ion batteries. Small 2021, 17, 2103673.

[45]

Wang, K. X.; Zhu, X. D.; Hu, Y. J.; Qiu, S. Y.; Gu, L. L.; Wang, C.; Zuo, P. J. Stable anchoring and uniform distribution of SiO2 nanotubes on reduced graphene oxide through electrostatic self-assembly for ultra-high lithium storage performance. Carbon 2020, 167, 835–842.

[46]

Wang, L.; Zhu, X. X.; Tu, K. K.; Liu, D.; Tang, H. L.; Li, J. S.; Li, X.; Xie, Z. Z.; Qu, D. Y. Synthesis of carbon-SiO2 hybrid layer@SiO2@CNT coaxial nanotube and its application in lithium storage. Electrochim Acta 2020, 354, 136726.

[47]

Li, Z. L.; Zhao, H. L.; Wang, J.; Zhang, T. H.; Fu, B. Y.; Zhang, Z. J.; Tao, X. Rational structure design to realize high-performance SiO x @C anode material for lithium ion batteries. Nano Res. 2020, 13, 527–532.

[48]

Sui, D.; Yao, M.; Si, L. Q.; Yan, K.; Shi, J. G.; Wang, J. S.; Xu, C. C.; Zhang, Y. S. Biomass-derived carbon coated SiO2 nanotubes as superior anode for lithium-ion batteries. Carbon 2023, 205, 510–518.

[49]

Wang, H. R.; Cai, W. J.; Wang, S.; Li, B. Z.; Yang, Y. G.; Li, Y.; Wu, Q. H. Fabrication of helical SiO2@Fe-N doped C nanofibers and their applications as stable lithium ion battery anodes and superior oxygen reduction reaction catalysts. Electrochim. Acta 2020, 342, 136107.

[50]

Wang, W. L.; Wang, Y.; Yuan, L. X.; You, C. L.; Wu, J. W.; Liu, L. L.; Ye, J. L.; Wu, Y. L.; Fu, L. J. Recent advances in modification strategies of silicon-based lithium-ion batteries. Nano Res. 2023, 16, 3781–3803.

[51]

Fukata, N.; Mitome, M.; Bando, Y.; Wu, W. Z.; Wang, Z. L. Lithium ion battery anodes using Si-Fe based nanocomposite structures. Nano Energy, 2016, 26, 37–42.

[52]

Xie, J.; Sun, L.; Liu, Y. X.; Xi, X. G.; Chen, R. Y.; Jin, Z. SiO x /C-Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage. Nano Res. 2022, 15, 395–400.

[53]

Belgibayeva, A.; Taniguchi, I. Synthesis and characterization of SiO2/C composite nanofibers as free-standing anode materials for Li-ion batteries. Electrochim. Acta 2019, 328, 135101.

[54]

Tang, C. J.; Sheng, J. Z.; Xu, C.; Khajehbashi, S. M. B.; Wang, X. P.; Hu, P.; Wei, X. J.; Wei, Q. L.; Zhou, L.; Mai, L. Q. Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19427–19432.

[55]

Park, J. C.; Kang, S. W.; Kim, J. C.; Kwon, J. I.; Jang, S. H.; Rhim, G. B.; Kim, M.; Chun, D. H.; Lee, H. T.; Jung, H. et al. Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer-Tropsch reaction. Nano Res. 2017, 10, 1044–1055.

[56]

Yu, M.; Li, S. M.; Ren, X. L.; Liu, N.; Guo, W. N.; Xue, J.; Tan, L. F.; Fu, C. H.; Wu, Q.; Niu, M. et al. Magnetic bimetallic heterointerface nanomissiles with enhanced microwave absorption for microwave thermal/dynamics therapy of breast cancer. ACS Nano 2024, 18, 3636–3650.

[57]

Fang, X. Y.; Shi, X. L.; Cao, M. S.; Yuan, J. Micro-current attenuation modeling and numerical simulation for cage-like ZnO/SiO2 nanocomposite. J. Appl. Phys. 2008, 104, 096101.

[58]

Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

[59]

Zhu, Y. H.; Liu, T. T.; Li, L.; Cao, M. S. Multifunctional WSe2/Co3C composite for efficient electromagnetic absorption, EMI shielding, and energy conversion. Nano Res. 2024, 17, 1655–1665.

[60]

Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

[61]

Yan, J.; Zheng, Q.; Wang, S. P.; Tian, Y. Z.; Gong, W. Q.; Gao, F.; Qiu, J. J.; Li, L.; Yang, S. H.; Cao, M. S. Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 2023, 35, 2300015.

[62]

Qiao, J.; Song, Q. H.; Zhang, X.; Zhao, S. Y.; Liu, J. R.; Nyström, G.; Zeng, Z. H. Enhancing interface connectivity for multifunctional magnetic carbon aerogels: An in situ growth strategy of metal-organic frameworks on cellulose nanofibrils. Adv. Sci. (Weinh.) 2024, 2400403

[63]

Huang, X. G.; Ma, Y. B.; Lai, H. R.; Jia, Q.; Zhu, L. Y.; Liu, J.; Quan, B. Conductive substrates-based component tailoring via thermal conversion of metal organic framework for enhanced microwave absorption performances. J. Colloid Interface Sci. 2022, 608, 1323–1333.

[64]

Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

[65]

Wang, X. X.; Zheng, Q.; Zheng, Y. J.; Cao, M. S. Green EMI shielding: Dielectric/magnetic "genes" and design philosophy. Carbon 2023, 206, 124–141.

[66]

Pan, Y. L.; Zhu, Q. Q.; Zhu, J. H.; Cheng, Y. H.; Yu, B. W.; Jia, Z. R.; Wu, G. L. Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 2023, 16, 10666–10677.

[67]

Song, W. L.; Cao, M. S.; Hou, Z. L.; Fang, X. Y.; Shi, X. L.; Yuan, J. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 2009, 94, 233110.

[68]

Wu, D.; Wang, Y. Q.; Deng, S. L.; Lan, D.; Xiang, Z. N.; He, Q. C. Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption. Nano Res. 2023, 16, 1859–1868.

[69]

Zhang, B. H.; Cui, J. C.; He, D. P.; Zhang, J. M.; Yang, L. J.; Zhu, W.; Lv, H. L. Transparent electromagnetic absorption film derived from the biomass derivate. J. Mater. Sci. Technol. 2024, 185, 98–106.

[70]

Guo, Y. Y.; Zhang, M.; Cheng, T. T.; Xie, Y. X.; Zhao, L. B.; Jiang, L.; Zhao, W. X.; Yuan, L. Y.; Meng, A. L.; Zhang, J. et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 2023, 16, 9591–9601.

[71]

Chang, W. S.; Park, C. M.; Kim, J. H.; Kim, Y. U.; Jeong, G.; Sohn, H. J. Quartz (SiO2): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6895–6899.

[72]

Sasidharan, M.; Liu, D.; Gunawardhana, N.; Yoshio, M.; Nakashima, K. Synthesis, characterization and application for lithium-ion rechargeable batteries of hollow silica nanospheres. J. Mater. Chem. 2011, 21, 13881–13888.

[73]

Zhang, L.; Deng, J. W.; Liu, L. F.; Si, W. P.; Oswald, S.; Xi, L. X.; Kundu, M.; Ma, G. Z.; Gemming, T.; Baunack, S. et al. Hierarchically designed SiO x /SiO y bilayer nanomembranes as stable anodes for lithium ion batteries. Adv. Mater. 2014, 26, 4527–4532.

[74]

Favors, Z.; Wang, W.; Bay, H. H.; George, A.; Ozkan, M.; Ozkan, C. S. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries. Sci. Rep. 2014, 4, 4605.

[75]

Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 2016, 16, 282–288.

[76]

Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarascon, J. M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634.

[77]

Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895–904.

[78]

Fu, R. S.; Wu, Y. K.; Fan, C. Z.; Long, Z. X.; Shao, G. J.; Liu, Z. P. Reactivating Li2O with nano-Sn to achieve ultrahigh initial coulombic efficiency SiO anodes for Li-ion batteries. ChemSusChem 2019, 12, 3377–3382.

[79]

Zhu, M. Y.; Shen, Y. B.; Chang, L. M.; Yin, D. M.; Cheng, Y.; Wang, L. M. Enabling high electrochemical activity of a hollow SiO2 anode by decorating it with ultrafine cobalt nanoparticles and a carbon matrix for long-lifespan lithium ion batteries. Nanoscale 2020, 12, 13442–13449.

[80]

Wu, X. L.; Guo, Y. G.; Su, J.; Xiong, J. W.; Zhang, Y. L.; Wan, L. J. Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1155–1160.

[81]

Liu, Z. H.; Yu, Q.; Zhao, Y. L.; He, R. H.; Xu, M.; Feng, S. H.; Li, S. D.; Zhou, L.; Mai, L. Q. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285–309.

[82]

Shu, J. C.; Cao, M. S.; Zhang, Y. L.; Wang, Y. Z.; Zhao, Q. L.; Fang, X. Y.; Yang, S. H.; Qin, Y.; Yuan, J. Atomic-molecular engineering tailoring graphene microlaminates to tune multifunctional antennas. Adv. Funct. Mater. 2023, 33, 2212379.

[83]

Yao, L. H.; Wang, Y. C.; Zhao, J. G.; Zhu, Y. Q.; Cao, M. S. Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 2023, 19, 2208101.

[84]

Zheng, Q.; Wang, J. Q.; Yu, M. J.; Cao, W. Q.; Zhai, H. Z.; Cao, M. S. Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon 2023, 210, 118049.

Nano Research
Pages 7301-7314
Cite this article:
Han C, Zheng Q, Jin J, et al. Multidimensional hollow SiO2/C nanofibers modified by magnetic nanocrystals for electromagnetic energy conversion and lithium battery storage. Nano Research, 2024, 17(8): 7301-7314. https://doi.org/10.1007/s12274-024-6746-7
Topics:
Part of a topical collection:

584

Views

8

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 23 February 2024
Revised: 09 May 2024
Accepted: 10 May 2024
Published: 01 June 2024
© Tsinghua University Press 2024
Return