Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Activated fibroblasts are major mediators of pulmonary fibrosis. Fibroblasts are generally found in the connective tissue but upon activation can generate excess extracellular matrix (ECM) in the lung interstitial section. Therefore, fibroblasts are one of the most targeted cells for treating idiopathic pulmonary fibrosis (IPF). Here, we develop an anti-fibrotic platform that can modulate both the lysophosphatidic acid receptor 1 (LPA1) and the inflammatory pathway through tumor necrosis factor α-induced protein 3 (TNFAIP3, also known as A20) in fibroblasts. First, we synthesized a series of LPA1 antagonists, AM095 and AM966, derived amino lipids (LA lipids) which were formulated into LA-lipid nanoparticles (LA-LNPs) encapsulating mRNA. Specifically, LA5-LNPs, with AM966 head group and biodegradable acetal lipid tails, showed efficient A20 mRNA delivery to lung fibroblasts in vitro (80.2% ± 1.5%) and ex vivo (17.2% ± 0.4%). When treated to primary mouse lung fibroblasts (MLF), this formulation inhibited fibroblast migration and collagen production, thereby slowing the progression of IPF. Overall, LA5-LNPs encapsulated with A20 mRNA is a novel platform offering a potential approach to regulate fibroblast activation for the treatment of IPF.
Liu, Y. M.; Nepali, K.; Liou, J. P. Idiopathic pulmonary fibrosis: Current status, recent progress, and emerging targets. J. Med. Chem. 2017, 60, 527–553.
Nanthakumar, C. B.; Hatley, R. J. D.; Lemma, S.; Gauldie, J.; Marshall, R. P.; Macdonald, S. J. F. Dissecting fibrosis: Therapeutic insights from the small-molecule toolbox. Nat. Rev. Drug Discov. 2015, 14, 693–720.
Koudstaal, T.; Wijsenbeek, M. S. Idiopathic pulmonary fibrosis. Presse Med. 2023, 52, 104166.
Glass, D. S.; Grossfeld, D.; Renna, H. A.; Agarwala, P.; Spiegler, P.; Kasselman, L. J.; Glass, A. D.; DeLeon, J.; Reiss, A. B. Idiopathic pulmonary fibrosis: Molecular mechanisms and potential treatment approaches. Respir. Investig. 2020, 58, 320–335.
Desai, O.; Winkler, J.; Minasyan, M.; Herzog, E. L. The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front. Med. 2018, 5, 43.
Selman, M.; King, T. E. Jr. ; Pardo, A. Idiopathic pulmonary fibrosis: Prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med. 2001, 134, 136–151.
Xaubet, A.; Serrano-Mollar, A.; Ancochea, J. Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert Opin. Pharmacother. 2014, 15, 275–281.
Chaudhary, N. I.; Roth, G. J.; Hilberg, F.; Müller-Quernheim, J.; Prasse, A.; Zissel, G.; Schnapp, A.; Park, J. E. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur. Respir. J. 2007, 29, 976–985.
Lin, M. E.; Herr, D. R.; Chun, J. Lysophosphatidic acid (LPA) receptors: Signaling properties and disease relevance. Prostaglandins Other Lipid Mediat. 2010, 91, 130–138.
Tager, A. M.; LaCamera, P.; Shea, B. S.; Campanella, G. S.; Selman, M.; Zhao, Z. W.; Polosukhin, V.; Wain, J.; Karimi-Shah, B. A.; Kim, N. D. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat. Med. 2008, 14, 45–54.
Swaney, J. S.; Chapman, C.; Correa, L. D.; Stebbins, K. J.; Bundey, R. A.; Prodanovich, P. C.; Fagan, P.; Baccei, C. S.; Santini, A. M.; Hutchinson, J. H. et al. A novel, orally active LPA1 receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br. J. Pharmacol. 2010, 160, 1699–1713.
Ninou, I.; Kaffe, E.; Müller, S.; Budd, D. C.; Stevenson, C. S.; Ullmer, C.; Aidinis, V. Pharmacologic targeting of the ATX/LPA axis attenuates bleomycin-induced pulmonary fibrosis. Pulm. Pharmacol. Ther. 2018, 52, 32–40.
Ma, A.; Malynn, B. A. A20: Linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 2012, 12, 774–785.
Bhattacharyya, S.; Wang, W. X.; L. Van Duyn Graham, L.; Varga, J. A20 suppresses canonical Smad-dependent fibroblast activation: Novel function for an endogenous inflammatory modulator. Arthritis Res. Ther. 2016, 18, 216.
Liu, S. S.; Lv, X. X.; Liu, C.; Qi, J.; Li, Y. X.; Wei, X. P.; Li, K.; Hua, F.; Cui, B.; Zhang, X. W. et al. Targeting degradation of the transcription factor C/EBPβ reduces lung fibrosis by restoring activity of the ubiquitin-editing enzyme A20 in macrophages. Immunity 2019, 51, 522–534.e7.
Zhang, Y. B.; Hou, X. C.; Du, S.; Xue, Y. E.; Yan, J. Y.; Kang, D. D.; Zhong, Y. C.; Wang, C.; Deng, B. B.; McComb, D. W. et al. Close the cancer-immunity cycle by integrating lipid nanoparticle-mRNA formulations and dendritic cell therapy. Nat. Nanotechnol. 2023, 18, 1364–1374.
Xue, Y. E.; Zhang, Y. B.; Zhong, Y. C.; Du, S.; Hou, X. C.; Li, W. Q.; Li, H. Y.; Wang, S. Y.; Wang, C.; Yan, J. Y. et al. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nat. Commun. 2024, 15, 739.
Zhang, Y. B.; Yan, J. Y.; Hou, X. C.; Wang, C.; Kang, D. D.; Xue, Y. E.; Du, S.; Deng, B. B.; McComb, D. W.; Liu, S. L. et al. STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2. Nano Lett. 2023, 23, 2593–2600.
Yan, J. Y.; Kang, D. D.; Dong, Y. Z. Harnessing lipid nanoparticles for efficient CRISPR delivery. Biomater. Sci. 2021, 9, 6001–6011.
Cui, Z. F.; Zeng, C.; Huang, F. R.; Yuan, F. W.; Yan, J. Y.; Zhao, Y.; Zhou, Y. F.; Hankey, W.; Jin, V. X.; Huang, J. T. et al. Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection. Nat. Chem. Biol. 2022, 18, 1056–1064.
Zeng, C. X.; Hou, X. C.; Yan, J. Y.; Zhang, C. X.; Li, W. Q.; Zhao, W. Y.; Du, S.; Dong, Y. Z. Leveraging mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens in vivo. Adv. Mater. 2020, 32, 2004452.
Yan, J. Y.; Kang, D. D.; Turnbull, G.; Dong, Y. Z. Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer. Adv. Drug Deliv. Rev. 2022, 180, 114042.
Li, W. Q.; Zhang, X. F.; Zhang, C. X.; Yan, J. Y.; Hou, X. C.; Du, S.; Zeng, C. X.; Zhao, W. Y.; Deng, B. B.; McComb, D. W. et al. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 2021, 12, 7264.
Kang, D. D.; Li, H. Y.; Dong, Y. Z. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Adv. Drug Deliv. Rev. 2023, 199, 114961.
Li, B.; Luo, X.; Deng, B. B.; Wang, J. F.; McComb, D. W.; Shi, Y. M.; Gaensler, K. M. L.; Tan, X.; Dunn, A. L.; Kerlin, B. A. et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015, 15, 8099–8107.
Zhang, X. F.; Zhao, W. Y.; Nguyen, G. N.; Zhang, C. X.; Zeng, C. X.; Yan, J. Y.; Du, S.; Hou, X. C.; Li, W. Q.; Jiang, J.; Deng, B. B. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 2020, 6, eabc2315.
Yan, J. Y.; Zhang, Y. B.; Du, S.; Hou, X. C.; Li, W. Q.; Zeng, C. X.; Zhang, C. X.; Cheng, J.; Deng, B. B.; McComb, D. W. et al. Nanomaterials-mediated Co-stimulation of toll-like receptors and CD40 for antitumor immunity. Adv. Mater. 2022, 34, 2207486.
Akinc, A.; Maier, M. A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X. Y.; Hope, M. J.; Madden, T. D. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 2019, 14, 1084–1087.
Darby, I. A.; Laverdet, B.; Bonté, F.; Desmoulière, A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 2014, 7, 301–311.
Ongun, M.; Lokras, A. G.; Baghel, S.; Shi, Z. N.; Schmidt, S. T.; Franzyk, H.; Rades, T.; Sebastiani, F.; Thakur, A.; Foged, C. Lipid nanoparticles for local delivery of mRNA to the respiratory tract: Effect of PEG-lipid content and administration route. Eur. J. Pharm. Biopharm. 2024, 198, 114266.
Lokugamage, M. P.; Vanover, D.; Beyersdorf, J.; Hatit, M. Z. C.; Rotolo, L.; Echeverri, E. S.; Peck, H. E.; Ni, H. Z.; Yoon, J. K.; Kim, Y. T. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 2021, 5, 1059–1068.
Sarode, A.; Patel, P.; Vargas-Montoya, N.; Allawzi, A.; Zhilin-Roth, A.; Karmakar, S.; Boeglin, L.; Deng, H. F.; Karve, S.; DeRosa, F. Inhalable dry powder product (DPP) of mRNA lipid nanoparticles (LNPs) for pulmonary delivery. Drug Deliv. Transl. Res. 2024, 14, 360–372.
Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320.
Qiu, M.; Tang, Y.; Chen, J. J.; Muriph, R.; Ye, Z. F.; Huang, C. F.; Evans, J.; Henske, P. E.; Xu, Q. B. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2116271119.
712
Views
116
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.