AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Viral and nonviral nanocarriers for in vivo CRISPR-based gene editing

Zhongyuan Guo1,§Audrey T. Zhu1,§Ronnie H. Fang1,2( )Liangfang Zhang1( )
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA
Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA

§ Zhongyuan Guo and Audrey T. Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The continued development of clustered regularly interspaced short palindromic repeats (CRISPR) technology has the potential to greatly impact clinical medicine, particularly for disease diagnosis and treatment. Despite high demand for the in vivo delivery of CRISPR-based therapies, significant challenges persist. These include rapid degradation by enzymes, inefficient disease site targeting, and the risk of undesired off-target outcomes. Nanoparticulate platforms, with their tailorable properties, have been engineered to efficiently package CRISPR payloads in various formats, including as plasmid DNA, mRNA, and ribonucleoprotein complexes, for in vivo delivery. Among them, recombinant adeno-associated viruses, virus-like particles, and lipid nanoparticles have displayed exceptional promise. This review will discuss the development of these and other nanocarriers for in vivo CRISPR-based genome editing.

References

[1]

Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 2020, 578, 229–236.

[2]

Gaj, T.; Gersbach, C. A.; Barbas III, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405

[3]

Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821.

[4]

Shamshirgaran, Y.; Liu, J.; Sumer, H.; Verma, P. J.; Taheri-Ghahfarokhi, A. Tools for efficient genome editing; ZFN, TALEN, and CRISPR. Methods Mol. Biol. 2022, 2495, 29–46.

[5]

Liu, G. W.; Lin, Q. P.; Jin, S.; Gao, C. X. The CRISPR-Cas toolbox and gene editing technologies. Mol. Cell 2022, 82, 333–347.

[6]

Wang, J. Y.; Doudna, J. A. CRISPR technology: A decade of genome editing is only the beginning. Science 2023, 379, eadd8643.

[7]

Liu, W. Y.; Li, L. X.; Jiang, J. X.; Wu, M.; Lin, P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis. Clin. Med. 2021, 4, 179–191.

[8]

Rosenblum, D.; Gutkin, A.; Dammes, N.; Peer, D. Progress and challenges towards CRISPR/Cas clinical translation. Adv. Drug Deliv. Rev. 2020, 154–155, 176–186

[9]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[10]

Namiot, E. D.; Sokolov, A. V.; Chubarev, V. N.; Tarasov, V. V.; Schiöth, H. B. Nanoparticles in clinical trials: Analysis of clinical trials, FDA approvals and use for COVID-19 vaccines. Int. J. Mol. Sci. 2023, 24, 787.

[11]

Chamundeeswari, M.; Jeslin, J.; Verma, M. L. Nanocarriers for drug delivery applications. Environ. Chem. Lett. 2019, 17, 849–865.

[12]

Meyer, R. A.; Sunshine, J. C.; Green, J. J. Biomimetic particles as therapeutics. Trends Biotechnol. 2015, 33, 514–524.

[13]

Davidson, B. L.; Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nat. Rev. Neurosci. 2003, 4, 353–364.

[14]

Liang, Y. J.; Duan, L.; Lu, J. P.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11, 3183–3195.

[15]

Hu, C. M.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U S A 2011, 108, 10980–10985.

[16]

Fang, R. H.; Gao, W. W.; Zhang, L. F. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 2023, 20, 33–48.

[17]

Lin, Y.; Wagner, E.; Lächelt, U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater. Sci. 2022, 10, 1166–1192.

[18]

Wan, T.; Niu, D.; Wu, C. B.; Xu, F. J.; Church, G.; Ping, Y. Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. Mater. Today 2019, 26, 40–66.

[19]

Valdmanis, P. N.; Kay, M. A. Future of rAAV gene therapy: Platform for RNAi, gene editing, and beyond. Hum. Gene Ther. 2017, 28, 361–372.

[20]

Lyu, P.; Wang, L. X.; Lu, B. S. Virus-like particle mediated CRISPR/Cas9 delivery for efficient and safe genome editing. Life 2020, 10, 366.

[21]

Mukai, H.; Ogawa, K.; Kato, N.; Kawakami, S. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metab. Pharmacokinet. 2022, 44, 100450.

[22]

Wei, T.; Cheng, Q.; Min, Y. L.; Olson, E. N.; Siegwart, D. J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 2020, 11, 3232.

[23]

Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433.

[24]

Mojica, F. J. M.; Díez-Villaseñor, C.; Soria, E.; Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 2000, 36, 244–246.

[25]

Cong, L.; Ran, F. A.; Cox, D.; Lin, S. L.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X. B.; Jiang, W. Y.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823.

[26]

Gleditzsch, D.; Pausch, P.; Müller-Esparza, H.; Özcan, A.; Guo, X. H.; Bange, G.; Randau, L. PAM identification by CRISPR-Cas effector complexes: Diversified mechanisms and structures. RNA Biol. 2019, 16, 504–517.

[27]

Doench, J. G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E. W.; Donovan, K. F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191.

[28]

Jiang, F. G.; Doudna, J. A. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 2015, 30, 100–111.

[29]

Wang, J. Y.; Pausch, P.; Doudna, J. A. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat. Rev. Microbiol. 2022, 20, 641–656.

[30]

Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018, 9, 1911.

[31]

Paul, B.; Montoya, G. CRISPR-Cas12a: Functional overview and applications. Biomed. J. 2020, 43, 8–17.

[32]

Morisaka, H.; Yoshimi, K.; Okuzaki, Y.; Gee, P.; Kunihiro, Y.; Sonpho, E.; Xu, H. G.; Sasakawa, N.; Naito, Y.; Nakada, S. et al. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat. Commun. 2019, 10, 5302.

[33]

Colognori, D.; Trinidad, M.; Doudna, J. A. Precise transcript targeting by CRISPR-Csm complexes. Nat. Biotechnol. 2023, 41, 1256–1264.

[34]

Porto, E. M.; Komor, A. C.; Slaymaker, I. M.; Yeo, G. W. Base editing: Advances and therapeutic opportunities. Nat. Rev. Drug Discov. 2020, 19, 839–859.

[35]

Chen, P. J.; Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 2023, 24, 161–177.

[36]

Roman-Rodriguez, F. J.; Ugalde, L.; Álvarez, L.; Díez, B.; Ramirez, M. J.; Risueño, C.; Cortón, M.; Bogliolo, M.; Bernal, S.; March, F. et al. NHEJ-mediated repair of CRISPR-Cas9-induced DNA breaks efficiently corrects mutations in HSPCs from patients with Fanconi anemia. Cell Stem Cell 2019, 25, 607–621.e7.

[37]

Musunuru, K.; Chadwick, A. C.; Mizoguchi, T.; Garcia, S. P.; DeNizio, J. E.; Reiss, C. W.; Wang, K.; Iyer, S.; Dutta, C.; Clendaniel, V. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021, 593, 429–434

[38]

Stephenson, A. A.; Nicolau, S.; Vetter, T. A.; Dufresne, G. P.; Frair, E. C.; Sarff, J. E.; Wheeler, G. L.; Kelly, B. J.; White, P.; Flanigan, K. M. CRISPR-Cas9 homology-independent targeted integration of exons 1-19 restores full-length dystrophin in mice. Mol. Ther. Methods Clin. Dev. 2023, 30, 486–499.

[39]

Suzuki, K.; Tsunekawa, Y.; Hernandez-Benitez, R.; Wu, J.; Zhu, J.; Kim, E. J.; Hatanaka, F.; Yamamoto, M.; Araoka, T.; Li, Z. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016, 540, 144–149

[40]

Slaymaker, I. M.; Gao, L. Y.; Zetsche, B.; Scott, D. A.; Yan, W. X.; Zhang, F. Rationally engineered Cas9 nucleases with improved specificity. Science 2015, 351, 84–88.

[41]

Chen, J. S.; Dagdas, Y. S.; Kleinstiver, B. P.; Welch, M. M.; Sousa, A. A.; Harrington, L. B.; Sternberg, S. H.; Joung, J. K.; Yildiz, A.; Doudna, J. A. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 2017, 550, 407–410.

[42]

Schubert, M. S.; Thommandru, B.; Woodley, J.; Turk, R.; Yan, S. Q.; Kurgan, G.; McNeill, M. S.; Rettig, G. R. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Sci. Rep. 2021, 11, 19482.

[43]

Liu, M. J.; Rehman, S.; Tang, X. D.; Gu, K.; Fan, Q. L.; Chen, D. K.; Ma, W. T. Methodologies for improving HDR efficiency. Front. Genet. 2019, 9, 691.

[44]

Zhao, Z. H.; Shang, P.; Sage, F.; Geijsen, N. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR. Nucleic Acids Res. 2022, 50, e62.

[45]

Shen, B.; Zhang, W. S.; Zhang, J.; Zhou, J. K.; Wang, J. Y.; Chen, L.; Wang, L.; Hodgkins, A.; Iyer, V.; Huang, X. X. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 2014, 11, 399–402.

[46]

Mok, B. Y.; de Moraes, M. H.; Zeng, J.; Bosch, D. E.; Kotrys, A. V.; Raguram, A.; Hsu, F.; Radey, M. C.; Peterson, S. B.; Mootha, V. K. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020, 583, 631–637.

[47]

Komor, A. C.; Kim, Y. B.; Packer, M. S.; Zuris, J. A.; Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424.

[48]

Gaudelli, N. M.; Komor, A. C.; Rees, H. A.; Packer, M. S.; Badran, A. H.; Bryson, D. I.; Liu, D. R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471.

[49]

Sakata, R. C.; Ishiguro, S.; Mori, H.; Tanaka, M.; Tatsuno, K.; Ueda, H.; Yamamoto, S.; Seki, M.; Masuyama, N.; Nishida, K. et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat. Biotechnol. 2020, 38, 865–869.

[50]

Anzalone, A. V.; Randolph, P. B.; Davis, J. R.; Sousa, A. A.; Koblan, L. W.; Levy, J. M.; Chen, P. J.; Wilson, C.; Newby, G. A.; Raguram, A. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157.

[51]

Adikusuma, F.; Lushington, C.; Arudkumar, J.; Godahewa, G. I.; Chey, Y. C. J.; Gierus, L.; Piltz, S.; Geiger, A.; Jain, Y.; Reti, D. et al. Optimized nickase- and nuclease-based prime editing in human and mouse cells. Nucleic Acids Res. 2021, 49, 10785–10795.

[52]

Nelson, C. E.; Wu, Y. Y.; Gemberling, M. P.; Oliver, M. L.; Waller, M. A.; Bohning, J. D.; Robinson-Hamm, J. N.; Bulaklak, K.; Castellanos Rivera, R. M.; Collier, J. H. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 2019, 25, 427–432.

[53]

Ruan, G. X.; Barry, E.; Yu, D.; Lukason, M.; Cheng, S. H.; Scaria, A. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol. Ther. 2017, 25, 331–341

[54]

Wang, D.; Li, J.; Song, C. Q.; Tran, K.; Mou, H. W.; Wu, P. H.; Tai, P. W. L.; Mendonca, C. A.; Ren, L. Z.; Wang, B. Y. et al. Cas9-mediated allelic exchange repairs compound heterozygous recessive mutations in mice. Nat. Biotechnol. 2018, 36, 839–842.

[55]

Guo, C. T.; Ma, X. T.; Gao, F.; Guo, Y. X. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023, 11, 1143157.

[56]

Abudayyeh, O. O.; Gootenberg, J. S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J. J.; Verdine, V.; Cox, D. B. T.; Kellner, M. J.; Regev, A. et al. RNA targeting with CRISPR-Cas13. Nature 2017, 550, 280–284.

[57]

East-Seletsky, A.; O'Connell, M. R.; Knight, S. C.; Burstein, D.; Cate, J. H. D.; Tjian, R.; Doudna, J. A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016, 538, 270–273.

[58]

Radzisheuskaya, A.; Shlyueva, D.; Müller, I.; Helin, K. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res. 2016, 44, e141.

[59]

Kampmann, M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem. Biol. 2018, 13, 406–416.

[60]

Søndergaard, J. N.; Geng, K. Y.; Sommerauer, C.; Atanasoai, I.; Yin, X. S.; Kutter, C. Successful delivery of large-size CRISPR/Cas9 vectors in hard-to-transfect human cells using small plasmids. Commun. Biol. 2020, 3, 319.

[61]

Zhang, X. M.; Jin, H.; Huang, X. J.; Chaurasiya, B.; Dong, D. Y.; Shanley, T. P.; Zhao, Y. Y. Robust genome editing in adult vascular endothelium by nanoparticle delivery of CRISPR-Cas9 plasmid DNA. Cell Rep. 2022, 38, 110196.

[62]

Miller, J. B.; Zhang, S. Y.; Kos, P.; Xiong, H.; Zhou, K. J.; Perelman, S. S.; Zhu, H.; Siegwart, D. J. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem., Int. Ed. 2017, 56, 1059–1063.

[63]

Luther, D. C.; Lee, Y. W.; Nagaraj, H.; Scaletti, F.; Rotello, V. M. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: Advances and challenges. Expert Opin. Drug Deliv. 2018, 15, 905–913.

[64]

Xu, C. F.; Chen, G. J.; Luo, Y. L.; Zhang, Y.; Zhao, G.; Lu, Z. D.; Czarna, A.; Gu, Z.; Wang, J. Rational designs of in vivo CRISPR-Cas delivery systems. Adv. Drug Deliv. Rev. 2021, 168, 3–29.

[65]

DeWitt, M. A.; Corn, J. E.; Carroll, D. Genome. editing via delivery of Cas9 ribonucleoprotein. Methods 2017, 121–122, 9–15

[66]

Cheng, H.; Zhang, F.; Ding, Y. CRISPR/Cas9 delivery system engineering for genome editing in therapeutic applications. Pharmaceutics 2021, 13, 1649

[67]

van Haasteren, J.; Li, J.; Scheideler, O. J.; Murthy, N.; Schaffer, D. V. The delivery challenge: Fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 2020, 38, 845–855.

[68]

Bock, C.; Datlinger, P.; Chardon, F.; Coelho, M. A.; Dong, M. B.; Lawson, K. A.; Lu, T.; Maroc, L.; Norman, T. M.; Song, B. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2022, 2, 8.

[69]

Joung, J.; Ladha, A.; Saito, M.; Kim, N. G.; Woolley, A. E.; Segel, M.; Barretto, R. P. J.; Ranu, A.; Macrae, R. K.; Faure, G. et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N. Engl. J. Med. 2020, 383, 1492–1494.

[70]

Kellner, M. J.; Koob, J. G.; Gootenberg, J. S.; Abudayyeh, O. O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc. 2019, 14, 2986–3012

[71]

Lee, J.; Sheen, J. H.; Lim, O.; Lee, Y.; Ryu, J.; Shin, D.; Kim, Y. Y.; Kim, M. Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: A step toward universal T cell therapy. Sci. Rep. 2020, 10, 17753.

[72]

Dimitri, A.; Herbst, F.; Fraietta, J. A. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol. Cancer 2022, 21, 78.

[73]

Philippidis, A. CASGEVY makes history as FDA approves first CRISPR/Cas9 genome edited therapy. Hum. Gene Ther. 2024, 35, 1–4.

[74]

Mahmoud Ahmed, N. H.; Lai, M. I. The novel role of the B-cell lymphoma/leukemia 11A (BCL11A) gene in β-thalassaemia treatment. Cardiovasc. Hematol. Disord. Drug Targets 2023, 22, 226–236.

[75]

Frangoul, H.; Locatelli, F.; Bhatia, M.; Mapara, M. Y.; Molinari, L.; Sharma, A.; Lobitz, S.; de Montalembert, M.; Rondelli, D.; Steinberg, M. et al. Efficacy and safety of a single dose of exagamglogene autotemcel for severe sickle cell disease. Blood 2022, 140, 29–31.

[76]

Condò, I. Rare monogenic diseases: Molecular pathophysiology and novel therapies. Int. J. Mol. Sci. 2022, 23, 6525.

[77]

Long, C. Z.; Amoasii, L.; Bassel-Duby, R.; Olson, E. N. Genome editing of monogenic neuromuscular diseases: A systematic review. JAMA Neurol. 2016, 73, 1349–1355.

[78]

Lek, A.; Wong, B.; Keeler, A.; Blackwood, M.; Ma, K. Y.; Huang, S. S.; Sylvia, K.; Batista, A. R.; Artinian, R.; Kokoski, D. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne's muscular dystrophy. N. Engl. J. Med. 2023, 389, 1203–1210.

[79]

Maeder, M. L.; Stefanidakis, M.; Wilson, C. J.; Baral, R.; Barrera, L. A.; Bounoutas, G. S.; Bumcrot, D.; Chao, H.; Ciulla, D. M.; DaSilva, J. A. et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 2019, 25, 229–233.

[80]

Gautam, M.; Jozic, A.; Su, G. L. N.; Herrera-Barrera, M.; Curtis, A.; Arrizabalaga, S.; Tschetter, W.; Ryals, R. C.; Sahay, G. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat. Commun. 2023, 14, 6468.

[81]

Gillmore, J. D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M. L.; Seitzer, J.; O'Connell, D.; Walsh, K. R.; Wood, K. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 2021, 385, 493–502.

[82]

Longhurst, H. J.; Lindsay, K.; Petersen, R. S.; Fijen, L. M.; Gurugama, P.; Maag, D.; Butler, J. S.; Shah, M. Y.; Golden, A.; Xu, Y. X. et al. CRISPR-Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N. Engl. J. Med. 2024, 390, 432–441.

[83]

Lee, R. G.; Mazzola, A. M.; Braun, M. C.; Platt, C.; Vafai, S. B.; Kathiresan, S.; Rohde, E.; Bellinger, A. M.; Khera, A. V. Efficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models. Circulation 2023, 147, 242–253.

[84]

Kaminski, R.; Bella, R.; Yin, C.; Otte, J.; Ferrante, P.; Gendelman, H. E.; Li, H.; Booze, R.; Gordon, J.; Hu, W. et al. Excision of HIV-1 DNA by gene editing: A proof-of-concept in vivo study. Gene Ther. 2016, 23, 690–695.

[85]

Wei, T.; Cheng, Q.; Farbiak, L.; Anderson, D. G.; Langer, R.; Siegwart, D. J. Delivery of tissue-targeted scalpels: Opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano 2020, 14, 9243–9262.

[86]

Behr, M.; Zhou, J.; Xu, B.; Zhang, H. W. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm. Sin. B 2021, 11, 2150–2171.

[87]

Lu, L.; Li, J. R.; Moussaoui, M.; Boix, E. Immune modulation by human secreted RNases at the extracellular space. Front. Immunol. 2018, 9, 1012.

[88]

Rasul, M. F.; Hussen, B. M.; Salihi, A.; Ismael, B. S.; Jalal, P. J.; Zanichelli, A.; Jamali, E.; Baniahmad, A.; Ghafouri-Fard, S.; Basiri, A. et al. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol. Cancer 2022, 21, 64.

[89]

Chew, W. L. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 10, e1408.

[90]

Li, Y. M.; Bolinger, J.; Yu, Y. J.; Glass, Z.; Shi, N.; Yang, L.; Wang, M.; Xu, Q. B. Intracellular delivery and biodistribution study of CRISPR/Cas9 ribonucleoprotein loaded bioreducible lipidoid nanoparticles. Biomater. Sci. 2019, 7, 596–606.

[91]

Crudele, J. M.; Chamberlain, J. S. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat. Commun. 2018, 9, 3497.

[92]

Li, L.; Hu, S.; Chen, X. Y. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018, 171, 207–218.

[93]

Vicente, M. M.; Chaves-Ferreira, M.; Jorge, J. M. P.; Proença, J. T.; Barreto, V. M. The off-targets of clustered regularly interspaced short palindromic repeats gene editing. Front. Cell Dev. Biol. 2021, 9, 718466.

[94]

Höijer, I.; Emmanouilidou, A.; Östlund, R.; van Schendel, R.; Bozorgpana, S.; Tijsterman, M.; Feuk, L.; Gyllensten, U.; den Hoed, M.; Ameur, A. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat. Commun. 2022, 13, 627.

[95]

Garrood, W. T.; Kranjc, N.; Petri, K.; Kim, D. Y.; Guo, J. A.; Hammond, A. M.; Morianou, I.; Pattanayak, V.; Joung, J. K.; Crisanti, A. et al. Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito. Proc. Natl. Acad. Sci. U S A 2021, 118, e2004838117.

[96]

Fu, Y. F.; Foden, J. A.; Khayter, C.; Maeder, M. L.; Reyon, D.; Joung, J. K.; Sander, J. D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013, 31, 822–826.

[97]

Gabriel, R.; Lombardo, A.; Arens, A.; Miller, J. C.; Genovese, P.; Kaeppel, C.; Nowrouzi, A.; Bartholomae, C. C.; Wang, J. B.; Friedman, G. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 2011, 29, 816–823.

[98]

Stemmer, M.; Thumberger, T.; Del Sol Keyer, M.; Wittbrodt, J.; Mateo, J. L. CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 2015, 10, e0124633.

[99]

Chuai, G. H.; Ma, H. H.; Yan, J. F.; Chen, M.; Hong, N. F.; Xue, D. Y.; Zhou, C.; Zhu, C. Y.; Chen, K.; Duan, B. et al. DeepCRISPR: Optimized CRISPR guide RNA design by deep learning. Genome Biol. 2018, 19, 80

[100]

Kim, D.; Kim, J. S. DIG-seq: A genome-wide CRISPR off-target profiling method using chromatin DNA. Genome Res. 2018, 28, 1894–1900.

[101]

Kim, D.; Bae, S.; Park, J.; Kim, E.; Kim, S.; Yu, H. R.; Hwang, J.; Kim, J. I.; Kim, J. S. Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 2015, 12, 237–243.

[102]

Park, P. J. ChIP-seq: Advantages and challenges of a maturing technology. Nat. Rev. Genet. 2009, 10, 669–680.

[103]

Wienert, B.; Wyman, S. K.; Richardson, C. D.; Yeh, C. D.; Akcakaya, P.; Porritt, M. J.; Morlock, M.; Vu, J. T.; Kazane, K. R.; Watry, H. L. et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 2019, 364, 286–289.

[104]

Tsai, S. Q.; Zheng, Z. L.; Nguyen, N. T.; Liebers, M.; Topkar, V. V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A. J.; Le, L. P. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015, 33, 187–197.

[105]

Liang, S. Q.; Liu, P. P.; Smith, J. L.; Mintzer, E.; Maitland, S.; Dong, X. L.; Yang, Q. Y.; Lee, J.; Haynes, C. M.; Zhu, L. J. et al. Genome-wide detection of CRISPR editing in vivo using GUIDE-tag. Nat. Commun. 2022, 13, 437.

[106]

Kleinstiver, B. P.; Pattanayak, V.; Prew, M. S.; Tsai, S. Q.; Nguyen, N. T.; Zheng, Z. L.; Joung, J. K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016, 529, 490–495.

[107]

Ebrahimi, V.; Hashemi, A. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Gene 2020, 753, 144813.

[108]

Ryan, D. E.; Taussig, D.; Steinfeld, I.; Phadnis, S. M.; Lunstad, B. D.; Singh, M.; Vuong, X.; Okochi, K. D.; McCaffrey, R.; Olesiak, M. et al. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res. 2018, 46, 792–803.

[109]

Kim, S.; Kim, D.; Cho, S. W.; Kim, J.; Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014, 24, 1012–1019.

[110]

Mali, P.; Aach, J.; Stranges, P. B.; Esvelt, K. M.; Moosburner, M.; Kosuri, S.; Yang, L. H.; Church, G. M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 2013, 31, 833–838

[111]

Ran, F. A.; Hsu, P. D.; Lin, C. Y.; Gootenberg, J. S.; Konermann, S.; Trevino, A. E.; Scott, D. A.; Inoue, A.; Matoba, S.; Zhang, Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154, 1380–1389.

[112]

Wörner, T. P.; Bennett, A.; Habka, S.; Snijder, J.; Friese, O.; Powers, T.; Agbandje-McKenna, M.; Heck, A. J. R. Adeno-associated virus capsid assembly is divergent and stochastic. Nat. Commun. 2021, 12, 1642.

[113]

Sant'Anna, T. B.; Araujo, N. M. Adeno-associated virus infection and its impact in human health: An overview. Virol. J. 2022, 19, 173.

[114]

Naso, M. F.; Tomkowicz, B.; Perry III, W. L.; Strohl, W. R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017, 31, 317–334.

[115]

Earley, L. F.; Conatser, L. M.; Lue, V. M.; Dobbins, A. L.; Li, C. W.; Hirsch, M. L.; Samulski, R. J. Adeno-associated virus serotype-specific inverted terminal repeat sequence role in vector transgene expression. Hum. Gene Ther. 2020, 31, 151–162.

[116]

Berns, K. I. The unusual properties of the AAV inverted terminal repeat. Hum. Gene Ther. 2020, 31, 518–523.

[117]

Wang, D.; Tai, P. W. L.; Gao, G. P. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378.

[118]

Bijlani, S.; Pang, K. M.; Sivanandam, V.; Singh, A.; Chatterjee, S. The role of recombinant AAV in precise genome editing. Front. Genome Ed. 2022, 3, 799722.

[119]

Sabatino, D. E.; Bushman, F. D.; Chandler, R. J.; Crystal, R. G.; Davidson, B. L.; Dolmetsch, R.; Eggan, K. C.; Gao, G. P.; Gil-Farina, I.; Kay, M. A. et al. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol. Ther. 2022, 30, 2646–2663.

[120]

Xu, C. L.; Ruan, M. Z. C.; Mahajan, V. B.; Tsang, S. H. Viral delivery systems for CRISPR. Viruses 2019, 11, 28.

[121]

Castle, M. J.; Turunen, H. T.; Vandenberghe, L. H.; Wolfe, J. H. Controlling AAV tropism in the nervous system with natural and engineered capsids. In Gene Therapy for Neurological Disorders Manfredsson, F. P., Ed.; Humana: New York, 2016, 1, pp 133–149

[122]

Srivastava, A. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 2016, 21, 75–80.

[123]

Çerçi, B.; Uzay, I. A.; Kara, M. K.; Dinçer, P. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sci. 2023, 312, 121204.

[124]

Shen, S.; Sanchez, M. E.; Blomenkamp, K.; Corcoran, E. M.; Marco, E.; Yudkoff, C. J.; Jiang, H. Y.; Teckman, J. H.; Bumcrot, D.; Albright, C. F. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum. Gene Ther. 2018, 29, 861–873.

[125]

Wang, D.; Zhang, F.; Gao, G. P. CRISPR-based therapeutic genome editing: Strategies and in vivo delivery by AAV vectors. Cell 2020, 181, 136–150.

[126]

Wu, Z. J.; Yang, H. Y.; Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 2010, 18, 80–86.

[127]

Trapani, I. Adeno-associated viral vectors as a tool for large gene delivery to the retina. Genes 2019, 10, 287.

[128]

Xu, Y. Y.; Li, Z. J. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput. Struct. Biotechnol. J. 2020, 18, 2401–2415.

[129]

Madigan, V.; Zhang, F.; Dahlman, J. E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug Discov. 2023, 22, 875–894.

[130]

Tong, S.; Moyo, B.; Lee, C. M.; Leong, K.; Bao, G. Engineered materials for in vivo delivery of genome-editing machinery. Nat. Rev. Mater. 2019, 4, 726–737.

[131]

Chen, X. Y.; Gonçalves, M. A. F. V. Engineered viruses as genome editing devices. Mol. Ther. 2016, 24, 447–457.

[132]

Ibraheim, R.; Tai, P. W. L.; Mir, A.; Javeed, N.; Wang, J. M.; Rodríguez, T. C.; Namkung, S.; Nelson, S.; Khokhar, E. S.; Mintzer, E. et al. Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat. Commun. 2021, 12, 6267.

[133]

Hillary, V. E.; Ceasar, S. A. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol. Biotechnol. 2023, 65, 311–325.

[134]

Chavez, M.; Chen, X. Y.; Finn, P. B.; Qi, L. S. Advances in CRISPR therapeutics. Nat. Rev. Nephrol. 2023, 19, 9–22.

[135]

Kim, D. Y.; Lee, J. M.; Moon, S. B.; Chin, H. J.; Park, S.; Lim, Y.; Kim, D.; Koo, T.; Ko, J. H.; Kim, Y. S. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 2022, 40, 94–102.

[136]

Komor, A. C.; Zhao, K. T.; Packer, M. S.; Gaudelli, N. M.; Waterbury, A. L.; Koblan, L. W.; Kim, Y. B.; Badran, A. H.; Liu, D. R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: A base editors with higher efficiency and product purity. Sci. Adv. 2017, 3, eaao4774.

[137]

Ghosh, A.; Yue, Y. P.; Lai, Y.; Duan, D. S. A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol. Ther. 2008, 16, 124–130.

[138]

Ryu, S. M.; Koo, T.; Kim, K.; Lim, K.; Baek, G.; Kim, S. T.; Kim, H. S.; Kim, D. E.; Lee, H.; Chung, E. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 2018, 36, 536–539.

[139]

Song, Y. H.; Lou, H. H.; Boyer, J. L.; Limberis, M. P.; Vandenberghe, L. H.; Hackett, N. R.; Leopold, P. L.; Wilson, J. M.; Crystal, R. G. Functional cystic fibrosis transmembrane conductance regulator expression in cystic fibrosis airway epithelial cells by AAV6.2-mediated segmental trans-splicing. Hum. Gene Ther. 2009, 20, 267–281.

[140]

Riedmayr, L. M.; Hinrichsmeyer, K. S.; Thalhammer, S. B.; Mittas, D. M.; Karguth, N.; Otify, D. Y.; Böhm, S.; Weber, V. J.; Bartoschek, M. D.; Splith, V. et al. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat. Commun. 2023, 14, 6578

[141]

Villiger, L.; Grisch-Chan, H. M.; Lindsay, H.; Ringnalda, F.; Pogliano, C. B.; Allegri, G.; Fingerhut, R.; Häberle, J.; Matos, J.; Robinson, M. D. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 2018, 24, 1519–1525.

[142]

Aranko, A. S.; Wlodawer, A.; Iwaï, H. Nature's recipe for splitting inteins. Protein Eng. Des. Sel. 2014, 27, 263–271.

[143]

Levy, J. M.; Yeh, W. H.; Pendse, N.; Davis, J. R.; Hennessey, E.; Butcher, R.; Koblan, L. W.; Comander, J.; Liu, Q.; Liu, D. R. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 2020, 4, 97–110.

[144]

Calcedo, R.; Morizono, H.; Wang, L. L.; McCarter, R.; He, J. P.; Jones, D.; Batshaw, M. L.; Wilson, J. M. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin. Vaccine Immunol. 2011, 18, 1586–1588.

[145]

Charlesworth, C. T.; Deshpande, P. S.; Dever, D. P.; Camarena, J.; Lemgart, V. T.; Cromer, M. K.; Vakulskas, C. A.; Collingwood, M. A.; Zhang, L. Y.; Bode, N. M. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 2019, 25, 249–254.

[146]

Simhadri, V. L.; McGill, J.; McMahon, S.; Wang, J. X.; Jiang, H. Y.; Sauna, Z. E. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol. Ther. Methods Clin. Dev. 2018, 10, 105–112.

[147]

Manno, C. S.; Pierce, G. F.; Arruda, V. R.; Glader, B.; Ragni, M.; Rasko, J. J. E.; Ozelo, M. C.; Hoots, K.; Blatt, P.; Konkle, B. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 2006, 12, 342–347.

[148]

Monteilhet, V.; Saheb, S.; Boutin, S.; Leborgne, C.; Veron, P.; Montus, M. F.; Moullier, P.; Benveniste, O.; Masurier, C. A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8. Mol. Ther. 2011, 19, 2084–2091.

[149]

Chicoine, L. G.; Montgomery, C. L.; Bremer, W. G.; Shontz, K. M.; Griffin, D. A.; Heller, K. N.; Lewis, S.; Malik, V.; Grose, W. E.; Shilling, C. J. et al. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol. Ther. 2014, 22, 338–347.

[150]

Mingozzi, F.; Anguela, X. M.; Pavani, G.; Chen, Y. F.; Davidson, R. J.; Hui, D. J.; Yazicioglu, M.; Elkouby, L.; Hinderer, C. J.; Faella, A. et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl. Med. 2013, 5, 194ra92.

[151]

Mietzsch, M.; Barnes, C.; Hull, J. A.; Chipman, P.; Xie, J.; Bhattacharya, N.; Sousa, D.; McKenna, R.; Gao, G. P.; Agbandje-McKenna, M. Comparative analysis of the capsid structures of AAVrh.10, AAVrh.39, and AAV8. J. Virol. 2020, 94, e01769–19.

[152]

Tse, L. V.; Klinc, K. A.; Madigan, V. J.; Castellanos Rivera, R. M.; Wells, L. F.; Havlik, L. P.; Smith, J. K.; Agbandje-McKenna, M.; Asokan, A. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc. Natl. Acad. Sci. U S A 2017, 114, E4812–E4821.

[153]

Petry, H.; Brooks, A.; Orme, A.; Wang, P.; Liu, P.; Xie, J.; Kretschmer, P.; Qian, H. S.; Hermiston, T. W.; Harkins, R. N. Effect of viral dose on neutralizing antibody response and transgene expression after AAV1 vector re-administration in mice. Gene Ther. 2008, 15, 54–60.

[154]

Corti, M.; Cleaver, B.; Clément, N.; Conlon, T. J.; Faris, K. J.; Wang, G. S.; Benson, J.; Tarantal, A. F.; Fuller, D.; Herzog, R. W. et al. Evaluation of readministration of a recombinant adeno-associated virus vector expressing acid alpha-glucosidase in Pompe disease: Preclinical to clinical planning. Hum. Gene Ther. Clin. Dev. 2015, 26, 185–193.

[155]

Meliani, A.; Boisgerault, F.; Hardet, R.; Marmier, S.; Collaud, F.; Ronzitti, G.; Leborgne, C.; Costa Verdera, H.; Simon Sola, M.; Charles, S. et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat. Commun. 2018, 9, 4098.

[156]

Rogers, G. L.; Martino, A. T.; Aslanidi, G. V.; Jayandharan, G. R.; Srivastava, A.; Herzog, R. W. Innate immune responses to AAV vectors. Front. Microbiol. 2011, 2, 194.

[157]

Chan, Y. K.; Wang, S. K.; Chu, C. J.; Copland, D. A.; Letizia, A. J.; Costa Verdera, H.; Chiang, J. J.; Sethi, M.; Wang, M. K.; Neidermyer, W. J. Jr. et al. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci. Transl. Med. 2021, 13, eabd3438.

[158]

Faust, S. M.; Bell, P.; Cutler, B. J.; Ashley, S. N.; Zhu, Y. Q.; Rabinowitz, J. E.; Wilson, J. M. CpG-depleted adeno-associated virus vectors evade immune detection. J. Clin. Invest. 2013, 123, 2994–3001.

[159]

de Solis, C. A.; Ho, A.; Holehonnur, R.; Ploski, J. E. The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing. Front. Mol. Neurosci. 2016, 9, 70.

[160]

Zhang, J. F.; Chen, L.; Zhang, J.; Wang, Y. Drug inducible CRISPR/Cas systems. Comput. Struct. Biotechnol. J. 2019, 17, 1171–1177.

[161]

Li, A.; Lee, C. M.; Hurley, A. E.; Jarrett, K. E.; De Giorgi, M.; Lu, W. Q.; Balderrama, K. S.; Doerfler, A. M.; Deshmukh, H.; Ray, A. et al. A self-deleting AAV-CRISPR system for in vivo genome editing. Mol. Ther. Methods Clin. Dev. 2019, 12, 111–122.

[162]

Lagos-Quintana, M.; Rauhut, R.; Yalcin, A.; Meyer, J.; Lendeckel, W.; Tuschl, T. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 2002, 12, 735–739.

[163]

Chen, J. F.; Mandel, E. M.; Thomson, J. M.; Wu, Q. L.; Callis, T. E.; Hammond, S. M.; Conlon, F. L.; Wang, D. Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006, 38, 228–233.

[164]

Hoffmann, M. D.; Aschenbrenner, S.; Grosse, S.; Rapti, K.; Domenger, C.; Fakhiri, J.; Mastel, M.; Börner, K.; Eils, R.; Grimm, D. et al. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res. 2019, 47, e75.

[165]

Lee, J.; Mou, H. W.; Ibraheim, R.; Liang, S. Q.; Liu, P. P.; Xue, W.; Sontheimer, E. J. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 2019, 25, 1421–1431.

[166]

Issa, S. S.; Shaimardanova, A. A.; Solovyeva, V. V.; Rizvanov, A. A. Various AAV serotypes and their applications in gene therapy: An overview. Cells 2023, 12, 785.

[167]

Li, C. W.; Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272.

[168]

Jang, M. J.; Coughlin, G. M.; Jackson, C. R.; Chen, X. H.; Chuapoco, M. R.; Vendemiatti, J. L.; Wang, A. Z.; Gradinaru, V. Spatial transcriptomics for profiling the tropism of viral vectors in tissues. Nat. Biotechnol. 2023, 41, 1272–1286.

[169]

Lau, C. H.; Ho, J. W. T.; Lo, P. K.; Tin, C. Targeted transgene activation in the brain tissue by systemic delivery of engineered AAV1 expressing CRISPRa. Mol. Ther. Nucleic Acids 2019, 16, 637–649.

[170]

Münch, R. C.; Janicki, H.; Völker, I.; Rasbach, A.; Hallek, M.; Büning, H.; Buchholz, C. J. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol. Ther. 2013, 21, 109–118.

[171]

Boucher, P.; Cui, X. X.; Curiel, D. T. Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. J. Control. Release 2020, 327, 788–800.

[172]

Sayedahmed, E. E.; Kumari, R.; Mittal, S. K. Current use of adenovirus vectors and their production methods. In Viral Vectors for Gene Therapy . Manfredsson, F. P.; Benskey, M. J., Eds.; Humana: New York, 2019, 1, pp, 155–175

[173]

Watanabe, M.; Nishikawaji, Y.; Kawakami, H.; Kosai, K. I. Adenovirus biology, recombinant adenovirus, and adenovirus usage in gene therapy. Viruses 2021, 13, 2502.

[174]

Danthinne, X.; Imperiale, M. J. Production of first generation adenovirus vectors: A review. Gene Ther. 2000, 7, 1707–1714.

[175]

Wold, W. S. M.; Toth, K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther. 2013, 13, 421–433.

[176]

Alba, R.; Bosch, A.; Chillon, M. Gutless adenovirus: Last-generation adenovirus for gene therapy. Gene Ther. 2005, 12, S18–S27.

[177]

Ding, Q. R.; Strong, A.; Patel, K. M.; Ng, S. L.; Gosis, B. S.; Regan, S. N.; Cowan, C. A.; Rader, D. J.; Musunuru, K. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 2014, 115, 488–492.

[178]

Xu, L.; Park, K. H.; Zhao, L.; Xu, J.; El Refaey, M.; Gao, Y. D.; Zhu, H.; Ma, J. J.; Han, R. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol. Ther. 2016, 24, 564–569.

[179]

Wang, H. J.; Liu, Y.; Li, Z. Y.; Tuve, S.; Stone, D.; Kalyushniy, O.; Shayakhmetov, D.; Verlinde, C. L. M.; Stehle, T.; McVey, J. et al. In vitro and in vivo properties of adenovirus vectors with increased affinity to CD46. J. Virol. 2008, 82, 10567–10579

[180]

Li, C.; Psatha, N.; Sova, P.; Gil, S.; Wang, H. J.; Kim, J.; Kulkarni, C.; Valensisi, C.; Hawkins, R. D.; Stamatoyannopoulos, G. et al. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood 2018, 131, 2915–2928.

[181]

Federico, M. From lentiviruses to lentivirus vectors. In Lentivirus Gene Engineering Protocols, . Federico, M., Ed.; Humana: Totowa, 2003, 1, 3–15

[182]

Mátrai, J.; Chuah, M. K. L.; VandenDriessche, T. Recent advances in lentiviral vector development and applications. Mol. Ther. 2010, 18, 477–490.

[183]

Milone, M. C.; O'Doherty, U. Clinical use of lentiviral vectors. Leukemia 2018, 32, 1529–1541.

[184]

Sakuma, T.; Barry, M. A.; Ikeda, Y. Lentiviral vectors: Basic to translational. Biochem. J. 2012, 443, 603–618.

[185]

Shirley, J. L.; de Jong, Y. P.; Terhorst, C.; Herzog, R. W. Immune responses to viral gene therapy vectors. Mol. Ther. 2020, 28, 709–722.

[186]

Kotterman, M. A.; Chalberg, T. W.; Schaffer, D. V. Viral vectors for gene therapy: Translational and clinical outlook. Annu. Rev. Biomed. Eng. 2015, 17, 63–89.

[187]

Yew, C. H. T.; Gurumoorthy, N.; Nordin, F.; Tye, G. J.; Wan Kamarul Zaman, W. S.; Tan, J. J.; Ng, M. H. Integrase deficient lentiviral vector: Prospects for safe clinical applications. PeerJ 2022, 10, e13704.

[188]

Ortinski, P. I.; O'Donovan, B.; Dong, X. Y.; Kantor, B. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Mol. Ther. Methods Clin. Dev. 2017, 5, 153–164.

[189]

Nooraei, S.; Bahrulolum, H.; Hoseini, Z. S.; Katalani, C.; Hajizade, A.; Easton, A. J.; Ahmadian, G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 2021, 19, 59.

[190]

Lyu, P.; Lu, B. S. New advances in using virus-like particles and related technologies for eukaryotic genome editing delivery. Int. J. Mol. Sci. 2022, 23, 8750.

[191]

Bell, N. M.; Lever, A. M. L. HIV Gag polyprotein: Processing and early viral particle assembly. Trends Microbiol. 2013, 21, 136–144.

[192]

He, J. Y.; Yu, L. Y.; Lin, X. D.; Liu, X. Y.; Zhang, Y. M.; Yang, F.; Deng, W. Virus-like particles as nanocarriers for intracellular delivery of biomolecules and compounds. Viruses 2022, 14, 1905.

[193]

Austin, R. J.; Xia, T. B.; Ren, J. S.; Takahashi, T. T.; Roberts, R. W. Designed arginine-rich RNA-binding peptides with picomolar affinity. J. Am. Chem. Soc. 2002, 124, 10966–10967.

[194]

Wulczyn, F. G.; Kahmann, R. Translational stimulation: RNA sequence and structure requirements for binding of Com protein. Cell 1991, 65, 259–269.

[195]

Fouts, D. E.; True, H. L.; Celander, D. W. Functional recognition of fragmented operator sites by R17/MS2 coat protein, a translational repressor. Nucleic Acids Res. 1997, 25, 4464–4473.

[196]

Lim, F.; Downey, T. P.; Peabody, D. S. Translational repression and specific RNA binding by the coat protein of the Pseudomonas phage PP7. J. Biol. Chem. 2001, 276, 22507–22513.

[197]

Knopp, Y.; Geis, F. K.; Heckl, D.; Horn, S.; Neumann, T.; Kuehle, J.; Meyer, J.; Fehse, B.; Baum, C.; Morgan, M. et al. Transient retrovirus-based CRISPR/Cas9 all-in-one particles for efficient, targeted gene knockout. Mol. Ther. Nucleic Acids 2018, 13, 256–274.

[198]

Baron, Y.; Sens, J.; Lange, L.; Nassauer, L.; Klatt, D.; Hoffmann, D.; Kleppa, M. J.; Barbosa, P. V.; Keisker, M.; Steinberg, V. et al. Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. Mol. Ther. Nucleic Acids 2022, 27, 810–823.

[199]

Segel, M.; Lash, B.; Song, J. W.; Ladha, A.; Liu, C. C.; Jin, X.; Mekhedov, S. L.; Macrae, R. K.; Koonin, E. V.; Zhang, F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021, 373, 882–889.

[200]

Ling, S. K.; Yang, S. Q.; Hu, X. D.; Yin, D.; Dai, Y.; Qian, X. Q.; Wang, D. W.; Pan, X. Y.; Hong, J. X.; Sun, X. D. et al. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat. Biomed. Eng. 2021, 5, 144–156.

[201]

Yin, D.; Ling, S. K.; Wang, D. W.; Dai, Y.; Jiang, H.; Zhou, X. J.; Paludan, S. R.; Hong, J. X.; Cai, Y. J. Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat. Biotechnol. 2021, 39, 567–577.

[202]

Hamann, M. V.; Stanke, N.; Müllers, E.; Stirnnagel, K.; Hütter, S.; Artegiani, B.; Bragado Alonso, S.; Calegari, F.; Lindemann, D. Efficient transient genetic manipulation in vitro and in vivo by prototype foamy virus-mediated nonviral RNA transfer. Mol. Ther. 2014, 22, 1460–1471.

[203]

Lindel, F.; Dodt, C. R.; Weidner, N.; Noll, M.; Bergemann, F.; Behrendt, R.; Fischer, S.; Dietrich, J.; Cartellieri, M.; Hamann, M. V. et al. TraFo-CRISPR: Enhanced genome engineering by transient foamy virus vector-mediated delivery of CRISPR/Cas9 components. Mol. Ther. Nucleic Acids 2019, 18, 708–726.

[204]

Zhang, S.; Shen, J. T.; Li, D. L.; Cheng, Y. Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021, 11, 614–648.

[205]

Lyu, P.; Javidi-Parsijani, P.; Atala, A.; Lu, B. S. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-run' genome editing. Nucleic Acids Res. 2019, 47, e99.

[206]

Lu, Z. Y.; Yao, X. G.; Lyu, P.; Yadav, M.; Yoo, K.; Atala, A.; Lu, B. S. Lentiviral capsid-mediated Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient and safe multiplex genome editing. CRISPR J. 2021, 4, 914–928.

[207]

Lyu, P.; Lu, Z. Y.; Cho, S. I.; Yadav, M.; Yoo, K. W.; Atala, A.; Kim, J. S.; Lu, B. S. Adenine base editor ribonucleoproteins delivered by lentivirus-like particles show high on-target base editing and undetectable RNA off-target activities. CRISPR J. 2021, 4, 69–81.

[208]

Banaszynski, L. A.; Liu, C. W.; Wandless, T. J. Characterization of the FKBP·rapamycin·FRB ternary complex. J. Am. Chem. Soc. 2005, 127, 4715–4721.

[209]

Gee, P.; Lung, M. S. Y.; Okuzaki, Y.; Sasakawa, N.; Iguchi, T.; Makita, Y.; Hozumi, H.; Miura, Y.; Yang, L. F.; Iwasaki, M. et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat. Commun. 2020, 11, 1334.

[210]

Stark, L. A.; Hay, R. T. Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) interacts with Lys-tRNA synthetase: Implications for priming of HIV-1 reverse transcription. J. Virol. 1998, 72, 3037–3044.

[211]

Müller, B.; Tessmer, U.; Schubert, U.; Krausslich, H. G. Human immunodeficiency virus type 1 Vpr protein is incorporated into the virion in significantly smaller amounts than gag and is phosphorylated in infected cells. J. Virol. 2000, 74, 9727–9731.

[212]

Indikova, I.; Indik, S. Highly efficient 'hit-and-run' genome editing with unconcentrated lentivectors carrying Vpr.Prot.Cas9 protein produced from RRE-containing transcripts. Nucleic Acids Res. 2020, 48, 8178–8187.

[213]

Mangeot, P. E.; Risson, V.; Fusil, F.; Marnef, A.; Laurent, E.; Blin, J.; Mournetas, V.; Massouridès, E.; Sohier, T. J. M.; Corbin, A. et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat. Commun. 2019, 10, 45.

[214]

Banskota, S.; Raguram, A.; Suh, S.; Du, S. W.; Davis, J. R.; Choi, E. H.; Wang, X.; Nielsen, S. C.; Newby, G. A.; Randolph, P. B. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022, 185, 250–265.e16.

[215]
An, M. R.; Raguram, A.; Du, S. W.; Banskota, S.; Davis, J. R.; Newby, G. A.; Chen, P. Z.; Palczewski, K.; Liu, D. R. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol., in press, DOI: 10.1038/s41587-023-02078-y.
[216]
Hamilton, J. R.; Chen, E.; Perez, B. S.; Sandoval Espinoza, C. R.; Kang, M. H.; Trinidad, M.; Ngo, W.; Doudna, J. A. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol., in press, DOI: 10.1038/s41587-023-02085-z.
[217]

Jeong, M.; Lee, Y.; Park, J.; Jung, H.; Lee, H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv. Drug Deliv. Rev. 2023, 200, 114990.

[218]

Hald Albertsen, C.; Kulkarni, J. A.; Witzigmann, D.; Lind, M.; Petersson, K.; Simonsen, J. B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 2022, 188, 114416.

[219]

Holland, J. W.; Hui, C.; Cullis, P. R.; Madden, T. D. Poly(ethylene glycol)−lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry 1996, 35, 2618–2624.

[220]

Suzuki, T.; Suzuki, Y.; Hihara, T.; Kubara, K.; Kondo, K.; Hyodo, K.; Yamazaki, K.; Ishida, T.; Ishihara, H. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: Faster PEG shedding attenuates anti-PEG IgM production. Int. J. Pharm. 2020, 588, 119792.

[221]

Lokugamage, M. P.; Vanover, D.; Beyersdorf, J.; Hatit, M. Z. C.; Rotolo, L.; Echeverri, E. S.; Peck, H. E.; Ni, H. Z.; Yoon, J. K.; Kim, Y. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 2021, 5, 1059–1068.

[222]

Kulkarni, J. A.; Witzigmann, D.; Leung, J.; Tam, Y. Y. C.; Cullis, P. R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 2019, 11, 21733–21739.

[223]

Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300–7306.

[224]

Mui, B. L.; Tam, Y. K.; Jayaraman, M.; Ansell, S. M.; Du, X. Y.; Tam, Y. Y. C.; Lin, P. J. C.; Chen, S.; Narayanannair, J. K.; Rajeev, K. G. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2013, 2, e139.

[225]

Zhou, H.; Fan, Z. Y.; Li, P. Y.; Deng, J. J.; Arhontoulis, D. C.; Li, C. Y.; Bowne, W. B.; Cheng, H. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano 2018, 12, 10130–10141.

[226]

Sun, D.; Lu, Z. R. Structure and function of cationic and ionizable lipids for nucleic acid delivery. Pharm. Res. 2023, 40, 27–46.

[227]

Lv, H. T.; Zhang, S. B.; Wang, B.; Cui, S. H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 2006, 114, 100–109.

[228]

Ma, Z.; Li, J.; He, F. T.; Wilson, A.; Pitt, B.; Li, S. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun. 2005, 330, 755–759.

[229]

Wang, X.; Liu, S.; Sun, Y. H.; Yu, X. L.; Lee, S. M.; Cheng, Q.; Wei, T.; Gong, J. Y.; Robinson, J.; Zhang, D. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 2023, 18, 265–291.

[230]

Semple, S. C.; Klimuk, S. K.; Harasym, T. O.; Dos Santos, N.; Ansell, S. M.; Wong, K. F.; Maurer, N.; Stark, H.; Cullis, P. R.; Hope, M. J. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: Formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 2001, 1510, 152–166.

[231]

Schlich, M.; Palomba, R.; Costabile, G.; Mizrahy, S.; Pannuzzo, M.; Peer, D.; Decuzzi, P. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng. Transl. Med. 2021, 6, e10213.

[232]

Han, X. X.; Zhang, H. W.; Butowska, K.; Swingle, K. L.; Alameh, M. G.; Weissman, D.; Mitchell, M. J. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 2021, 12, 7233.

[233]

Zhang, L. M.; Wang, P.; Feng, Q.; Wang, N. X.; Chen, Z. T.; Huang, Y. Y.; Zheng, W. F.; Jiang, X. Y. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater. 2017, 9, e441.

[234]

Li, C. H.; Yang, T. R.; Weng, Y. H.; Zhang, M. J.; Zhao, D. Y.; Guo, S.; Hu, B.; Shao, W. X.; Wang, X. X.; Hussain, A. et al. Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy. Bioact. Mater. 2022, 9, 590–601.

[235]

Doudna, J. A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096.

[236]

Liu, C.; Zhang, L.; Liu, H.; Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control. Release 2017, 266, 17–26.

[237]

Zuris, J. A.; Thompson, D. B.; Shu, Y. L.; Guilinger, J. P.; Bessen, J. L.; Hu, J. H.; Maeder, M. L.; Joung, J. K.; Chen, Z. Y.; Liu, D. R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 2015, 33, 73–80.

[238]

Wang, M.; Zuris, J. A.; Meng, F. T.; Rees, H.; Sun, S.; Deng, P.; Han, Y.; Gao, X.; Pouli, D.; Wu, Q. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. U S A 2016, 113, 2868–2873.

[239]

Walther, J.; Wilbie, D.; Tissingh, V. S. J.; Öktem, M.; van der Veen, H.; Lou, B.; Mastrobattista, E. Impact of formulation conditions on lipid nanoparticle characteristics and functional delivery of CRISPR RNP for gene knock-out and correction. Pharmaceutics 2022, 14, 213.

[240]

Suzuki, Y.; Onuma, H.; Sato, R.; Sato, Y.; Hashiba, A.; Maeki, M.; Tokeshi, M.; Kayesh, M. E. H.; Kohara, M.; Tsukiyama-Kohara, K. et al. Lipid nanoparticles loaded with ribonucleoprotein-oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. J. Control. Release 2021, 330, 61–71.

[241]

Sato, Y.; Hashiba, K.; Sasaki, K.; Maeki, M.; Tokeshi, M.; Harashima, H. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J. Control. Release 2019, 295, 140–152.

[242]

Sato, Y.; Okabe, N.; Note, Y.; Hashiba, K.; Maeki, M.; Tokeshi, M.; Harashima, H. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles. Acta Biomater. 2020, 102, 341–350.

[243]

Walther, J.; Porenta, D.; Wilbie, D.; Seinen, C.; Benne, N.; Yang, Q. B.; de Jong, O. G.; Lei, Z. Y.; Mastrobattista, E. Comparative analysis of lipid nanoparticle-mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. Eur. J. Pharm. Biopharm. 2024, 196, 114207.

[244]

Müller, J. A.; Schäffler, N.; Kellerer, T.; Schwake, G.; Ligon, T. S.; Rädler, J. O. Kinetics of RNA-LNP delivery and protein expression. Eur. J. Pharm. Biopharm. 2024, 197, 114222.

[245]

Wadhwa, A.; Aljabbari, A.; Lokras, A.; Foged, C.; Thakur, A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 2020, 12, 102.

[246]

Qiu, M.; Glass, Z.; Chen, J. J.; Haas, M.; Jin, X.; Zhao, X. W.; Rui, X. H.; Ye, Z. F.; Li, Y. M.; Zhang, F. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl. Acad. Sci. U S A 2021, 118, e2020401118.

[247]

Ingle, R. G.; Fang, W. J. An overview of the stability and delivery challenges of commercial nucleic acid therapeutics. Pharmaceutics 2023, 15, 1158.

[248]

Chen, Q. B.; Zhang, Y.; Yin, H. Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Adv. Drug Deliv. Rev. 2021, 168, 246–258.

[249]

Furuichi, Y.; Shatkin, A. J. Viral and cellular mRNA capping: Past and prospects. Adv. Virus Res. 2000, 55, 135–184.

[250]

Devarkar, S. C.; Wang, C.; Miller, M. T.; Ramanathan, A.; Jiang, F. G.; Khan, A. G.; Patel, S. S.; Marcotrigiano, J. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. U S A 2016, 113, 596–601.

[251]

Züst, R.; Cervantes-Barragan, L.; Habjan, M.; Maier, R.; Neuman, B. W.; Ziebuhr, J.; Szretter, K. J.; Baker, S. C.; Barchet, W.; Diamond, M. S. et al. Ribose 2'- O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 2011, 12, 137–143.

[252]

Vaidyanathan, S.; Azizian, K. T.; Haque, A. K. M. A.; Henderson, J. M.; Hendel, A.; Shore, S.; Antony, J. S.; Hogrefe, R. I.; Kormann, M. S. D.; Porteus, M. H. et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol. Ther. Nucleic Acids 2018, 12, 530–542.

[253]

Dellinger, D. J.; Timár, Z.; Myerson, J.; Sierzchala, A. B.; Turner, J.; Ferreira, F.; Kupihar, Z.; Dellinger, G.; Hill, K. W.; Powell, J. A. et al. Streamlined process for the chemical synthesis of RNA using 2’- O-thionocarbamate-protected nucleoside phosphoramidites in the solid phase. J. Am. Chem. Soc. 2011, 133, 11540–11556.

[254]

Scaringe, S. A.; Wincott, F. E.; Caruthers, M. H. Novel RNA synthesis method using 5’- O-silyl-2’- O-orthoester protecting groups. J. Am. Chem. Soc. 1998, 120, 11820–11821.

[255]

He, K. Z.; Chou, E. T.; Begay, S.; Anderson, E. M.; van Brabant Smith, A. Conjugation and evaluation of triazole-linked single guide RNA for CRISPR-Cas9 gene editing. ChemBioChem 2016, 17, 1809–1812.

[256]

Taemaitree, L.; Shivalingam, A.; El-Sagheer, A. H.; Brown, T. An artificial triazole backbone linkage provides a split-and-click strategy to bioactive chemically modified CRISPR sgRNA. Nat. Commun. 2019, 10, 1610.

[257]

Lennox, K. A.; Behlke, M. A. Chemical modifications in RNA interference and CRISPR/Cas genome editing reagents. In RNA Interference and CRISPR Technologies , M., Ed.; Humana: New York, 2020, 1, pp, 23–55

[258]

Karikó, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833–1840.

[259]

Mir, A.; Alterman, J. F.; Hassler, M. R.; Debacker, A. J.; Hudgens, E.; Echeverria, D.; Brodsky, M. H.; Khvorova, A.; Watts, J. K.; Sontheimer, E. J. Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Nat. Commun. 2018, 9, 2641.

[260]

Cromwell, C. R.; Sung, K.; Park, J.; Krysler, A. R.; Jovel, J.; Kim, S. K.; Hubbard, B. P. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat. Commun. 2018, 9, 1448.

[261]

Zhou, W. Y.; Brown, W.; Bardhan, A.; Delaney, M.; Ilk, A. S.; Rauen, R. R.; Kahn, S. I.; Tsang, M.; Deiters, A. Spatiotemporal control of CRISPR/Cas9 function in cells and zebrafish using light-activated guide RNA. Angew. Chem., Int. Ed. 2020, 59, 8998–9003.

[262]

Yin, H.; Song, C. Q.; Suresh, S.; Wu, Q. Q.; Walsh, S.; Rhym, L. H.; Mintzer, E.; Bolukbasi, M. F.; Zhu, L. J.; Kauffman, K. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 2017, 35, 1179–1187.

[263]

Hendel, A.; Bak, R. O.; Clark, J. T.; Kennedy, A. B.; Ryan, D. E.; Roy, S.; Steinfeld, I.; Lunstad, B. D.; Kaiser, R. J.; Wilkens, A. B. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 2015, 33, 985–989.

[264]

Kopac, T. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: A critical review. Int. J. Biol. Macromol. 2021, 169, 290–301.

[265]

Akinc, A.; Querbes, W.; De, S.; Qin, J. N.; Frank-Kamenetsky, M.; Jayaprakash, K. N.; Jayaraman, M.; Rajeev, K. G.; Cantley, W. L.; Dorkin, J. R. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 2010, 18, 1357–1364.

[266]

Getz, G. S.; Reardon, C. A. Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J. Lipid Res. 2009, 50, S156–S161.

[267]

Sato, Y.; Kinami, Y.; Hashiba, K.; Harashima, H. Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-D-galactosamine/asialoglycoprotein receptor pathway. J. Control. Release 2020, 322, 217–226.

[268]

Pardi, N.; Tuyishime, S.; Muramatsu, H.; Kariko, K.; Mui, B. L.; Tam, Y. K.; Madden, T. D.; Hope, M. J.; Weissman, D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 2015, 217, 345–351.

[269]

Zhuo, C. Y.; Zhang, J. B.; Lee, J. H.; Jiao, J.; Cheng, D.; Liu, L.; Kim, H. W.; Tao, Y.; Li, M. Q. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct. Target. Ther. 2021, 6, 238.

[270]

Mirjalili Mohanna, S. Z.; Djaksigulova, D.; Hill, A. M.; Wagner, P. K.; Simpson, E. M.; Leavitt, B. R. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. J. Control. Release 2022, 350, 401–413.

[271]

Sheikh, O.; Yokota, T. Developing DMD therapeutics: A review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin. Investig. Drugs 2021, 30, 167–176.

[272]

Kenjo, E.; Hozumi, H.; Makita, Y.; Iwabuchi, K. A.; Fujimoto, N.; Matsumoto, S.; Kimura, M.; Amano, Y.; Ifuku, M.; Naoe, Y. et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat. Commun. 2021, 12, 7101.

[273]

Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320.

[274]

Huang, Y.; Wang, J.; Jiang, K. R.; Chung, E. J. Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney interactions. J. Control. Release 2021, 334, 127–137.

[275]

McCright, J.; Naiknavare, R.; Yarmovsky, J.; Maisel, K. Targeting lymphatics for nanoparticle drug delivery. Front. Pharmacol. 2022, 13, 887402.

[276]

Guo, P.; Liu, D. X.; Subramanyam, K.; Wang, B. R.; Yang, J.; Huang, J.; Auguste, D. T.; Moses, M. A. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 2018, 9, 130.

[277]

Park, S. J. Protein-nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles. Int. J. Nanomedicine 2020, 15, 5783–5802.

[278]

Zhang, R.; El-Mayta, R.; Murdoch, T. J.; Warzecha, C. C.; Billingsley, M. M.; Shepherd, S. J.; Gong, N. Q.; Wang, L. L.; Wilson, J. M.; Lee, D. et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater. Sci. 2021, 9, 1449–1463.

[279]

Rosenblum, D.; Gutkin, A.; Kedmi, R.; Ramishetti, S.; Veiga, N.; Jacobi, A. M.; Schubert, M. S.; Friedmann-Morvinski, D.; Cohen, Z. R.; Behlke, M. A. et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 2020, 6, eabc9450.

[280]

Qin, J. Y.; Xue, L. L.; Gong, N. Q.; Zhang, H. W.; Shepherd, S. J.; Haley, R. M.; Swingle, K. L.; Mitchell, M. J. RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Adv. 2022, 12, 25397–25404.

[281]

Ramishetti, S.; Kedmi, R.; Goldsmith, M.; Leonard, F.; Sprague, A. G.; Godin, B.; Gozin, M.; Cullis, P. R.; Dykxhoorn, D. M.; Peer, D. Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 2015, 9, 6706–6716.

[282]

Liang, C.; Guo, B. S.; Wu, H.; Shao, N. S.; Li, D. F.; Liu, J.; Dang, L.; Wang, C.; Li, H.; Li, S. H. et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat. Med. 2015, 21, 288–294.

[283]

Kedmi, R.; Veiga, N.; Ramishetti, S.; Goldsmith, M.; Rosenblum, D.; Dammes, N.; Hazan-Halevy, I.; Nahary, L.; Leviatan-Ben-Arye, S.; Harlev, M. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 2018, 13, 214–219.

[284]

Zeballos, C. M. A.; Gaj, T. Next-generation CRISPR technologies and their applications in gene and cell therapy. Trends Biotechnol. 2021, 39, 692–705.

[285]

Srivastava, A.; Mallela, K. M. G.; Deorkar, N.; Brophy, G. Manufacturing challenges and rational formulation development for AAV viral vectors. J. Pharm. Sci. 2021, 110, 2609–2624.

[286]

Vicente, T.; Roldão, A.; Peixoto, C.; Carrondo, M. J. T.; Alves, P. M. Large-scale production and purification of VLP-based vaccines. J. Invertebr. Pathol. 2011, 107, S42–S48.

[287]

Maeki, M.; Okada, Y.; Uno, S.; Sugiura, K.; Suzuki, Y.; Okuda, K.; Sato, Y.; Ando, M.; Yamazaki, H.; Takeuchi, M. et al. Mass production system for RNA-loaded lipid nanoparticles using piling up microfluidic devices. Appl. Mater. Today 2023, 31, 101754.

[288]

Shepherd, S. J.; Han, X. X.; Mukalel, A. J.; El-Mayta, R.; Thatte, A. S.; Wu, J. Y.; Padilla, M. S.; Alameh, M. G.; Srikumar, N.; Lee, D. et al. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proc. Natl. Acad. Sci. U S A 2023, 120, e2303567120.

[289]

Duan, L.; Ouyang, K.; Wang, J. H.; Xu, L. M.; Xu, X.; Wen, C. N.; Xie, Y. X.; Liang, Y. J.; Xia, J. Exosomes as targeted delivery platform of CRISPR/Cas9 for therapeutic genome editing. ChemBioChem 2021, 22, 3360–3368.

[290]

Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.

[291]

Hu, C. M.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

[292]

Ying, M.; Zhuang, J.; Wei, X. L.; Zhang, X. X.; Zhang, Y.; Jiang, Y.; Dehaini, D.; Chen, M. C.; Gu, S. L.; Gao, W. W. et al. Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv. Funct. Mater. 2018, 28, 1801032.

[293]

Zhang, Q. Z.; Dehaini, D.; Zhang, Y.; Zhou, J. L.; Chen, X. Y.; Zhang, L. D.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 2018, 13, 1182–1190.

[294]

Guo, Z. Y.; Zhou, J. R.; Yu, Y. Y.; Krishnan, N.; Noh, I.; Zhu, A. T.; Borum, R. M.; Gao, W. W.; Fang, R. H.; Zhang, L. F. Immunostimulatory DNA hydrogel enhances protective efficacy of nanotoxoids against bacterial infection. Adv. Mater. 2023, 35, 2211717.

[295]

Yoo, J. W.; Irvine, D. J.; Discher, D. E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521–535.

Nano Research
Cite this article:
Guo Z, Zhu AT, Fang RH, et al. Viral and nonviral nanocarriers for in vivo CRISPR-based gene editing. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6748-5
Topics:
Part of a topical collection:

471

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 March 2024
Revised: 08 May 2024
Accepted: 11 May 2024
Published: 20 June 2024
© Tsinghua University Press 2024
Return