AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancing electrochemical capacity and interfacial stability of lithium-ion batteries through side reaction modulation with ultrathin carbon nanotube film and optimized lithium cobalt oxide particle size

Wei Xi1,2( )Xiaogang Xia1,2Jiacheng Zhu1,2Dehua Yang3( )Sishen Xie1,2
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Advanced Passivation Technology Lab, College of Physics Science and Technology, Hebei University, Baoding 071002, China
Show Author Information

Graphical Abstract

Optimizing particle size of lithium cobalt oxide (LCO) by ball milling greatly enhanced battery rate performance at 10 C and higher C rates. However, the side reactions on the surface between the cathode and electrolyte were also strengthened as the specific surface area increased. Therefore, an ultrathin carbon nanotube film (UCNF) was introduced on the cathode surface to modulate the side reactions, leading to enhanced rate performance and stability.

Abstract

Lithium cobalt oxide (LCO), the first commercialized cathode active material for lithium-ion batteries, is known for high voltage and capacity. However, its application has been limited by relatively low capacity and stability at high C-rates. Reducing particle size is considered one of the most straightforward and effective strategies to enhance ion transfer, thus increasing the rate performance. However, side reactions are simultaneously enhanced as the specific surface area increases. Herein, we investigate the impact of LCO particles with varying size distributions and optimize the particle size. To modulate the side reactions associated with particle size reduction, an ultrathin carbon nanotube film (UCNF) is introduced to coat the cathode surface. With this simple process and optimized particle size, the rate performance improves significantly, normal commercial LCO achieves 118 mA·h·g−1 at 3.0–4.3 V and 20 C (0.72 mA·h·cm−2), corresponding to power density of 8732 W·kg−1. This method is applied to high voltage as well, 152 mA·h·g−1 at 3.0–4.6 V and 20 C (0.99 mA·h·cm−2) was achieved with high-voltage LCO (HVLCO), corresponding to power density of 11,552 W·kg−1. The cycling stability is also enhanced, with the capacity retention maintaining more than 96% after 100 cycles at 0.1 C. For the first time, UCNF is demonstrated to suppress the excessive decomposition of the electrolytes and solvents by blocking electron injection/extraction between LCO and electrolyte solution. Our findings provide a simple method for improving LCO rate performance, especially at high C-rates.

Electronic Supplementary Material

Download File(s)
6752_ESM.pdf (11.4 MB)

References

[1]

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

[2]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[3]

Xu, J. J.; Cai, X. Y.; Cai, S. M.; Shao, Y. X.; Hu, C.; Lu, S. R.; Ding, S. J. High-energy lithium-ion batteries: Recent progress and a promising future in applications. Energy Environ. Mater. 2023, 6, e12450.

[4]

Manthiram, A.; Goodenough, J. B. Lithium-based polyanion oxide cathodes. Nat. Energy 2021, 6, 844–845.

[5]

Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H. S.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007, 129, 7444–7452.

[6]

Yang, Q.; Huang, J.; Li, Y. J.; Wang, Y.; Qiu, J. L.; Zhang, J. N.; Yu, H. G.; Yu, X. Q.; Li, H.; Chen, L. Q. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. J. Power Sources 2018, 388, 65–70.

[7]

Tian, R. Y.; Park, S. H.; King, P. J.; Cunningham, G.; Coelho, J.; Nicolosi, V.; Coleman, J. N. Quantifying the factors limiting rate performance in battery electrodes. Nat. Commun. 2019, 10, 1933.

[8]

Lin, C.; Li, J. Y.; Yin, Z. W.; Huang, W. Y.; Zhao, Q. H.; Weng, Q. S.; Liu, Q.; Sun, J. L.; Chen, G. H.; Pan, F. Structural understanding for high-voltage stabilization of lithium cobalt oxide. Adv. Mater. 2024, 36, 2307404.

[9]

Ko, G.; Jeong, S.; Park, S.; Lee, J.; Kim, S.; Shin, Y.; Kim, W.; Kwon, K. Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries. Energy Storage Mater. 2023, 60, 102840.

[10]

Slima, I. B.; Karoui, K.; Rhaiem, A. B. Ionic conduction, structural and optical properties of LiCoO2 compound. Ionics 2023, 29, 1731–1739.

[11]

Park, M.; Zhang, X. C.; Chung, M.; Less, G. B.; Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929.

[12]

Wu, Y. P.; Huang, X. K.; Huang, L.; Chen, J. H. Strategies for rational design of high-power lithium-ion batteries. Energy Environ. Mater. 2021, 4, 19–45.

[13]

Yan, L. J.; Wang, K.; Luo, S.; Wu, H. C.; Luo, Y. F.; Yu, Y.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Sandwich-structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 4047–4057.

[14]

Mishra, G. K.; Gautam, M.; Sau, S.; Mitra, S. Surface-modified lithium cobalt oxide (LiCoO2) with enhanced performance at higher rates through Li-vacancy ordering in the monoclinic phase. ACS Appl. Energy Mater. 2021, 4, 14260–14272.

[15]

Du, W. B.; Gupta, A.; Zhang, X. C.; Sastry, A. M.; Shyy, W. Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance. Int. J. Heat Mass Transfer 2010, 53, 3552–3561.

[16]

Zheng, X. B.; Chen, Y. P.; Zheng, X. S.; Zhao, G. Q.; Rui, K.; Li, P.; Xu, X.; Cheng, Z. X.; Dou, S. X.; Sun, W. P. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1803482.

[17]

Xue, L.; Li, X. P.; Liao, Y. H.; Xing, L. D.; Xu, M. Q.; Li, W. S. Effect of particle size on rate capability and cyclic stability of LiNi0.5Mn1.5O4 cathode for high-voltage lithium ion battery. J. Solid State Electrochem. 2015, 19, 569–576.

[18]

Geder, J.; Hoster, H. E.; Jossen, A.; Garche, J.; Yu, D. Y. W. Impact of active material surface area on thermal stability of LiCoO2 cathode. J. Power Sources 2014, 257, 286–292.

[19]

Liu, Y. C.; Hong, L.; Jiang, R.; Wang, Y. D.; Patel, S. V.; Feng, X. Y.; Xiang, H. F. Multifunctional electrolyte additive stabilizes electrode–electrolyte interface layers for high-voltage lithium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 57430–57441.

[20]

Leroy, S.; Martinez, H.; Dedryvère, R.; Lemordant, D.; Gonbeau, D. Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study. Appl. Surf. Sci. 2007, 253, 4895–4905.

[21]

Spotte-Smith, E. W. C.; Petrocelli, T. B.; Patel, H. D.; Blau, S. M.; Persson, K. A. Elementary decomposition mechanisms of lithium hexafluorophosphate in battery electrolytes and interphases. ACS Energy Lett. 2023, 8, 347–355.

[22]

Zhang, J. N.; Li, Q. H.; Wang, Y.; Zheng, J. Y.; Yu, X. Q.; Li, H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 2018, 14, 1–7.

[23]

Kim, T.; Ono, L. K.; Qi, Y. B. Understanding the active formation of a cathode–electrolyte interphase (CEI) layer with energy level band bending for lithium-ion batteries. J. Mater. Chem. A 2023, 11, 221–231.

[24]

Li, J. Y.; Lin, C.; Weng, M. Y.; Qiu, Y.; Chen, P. H.; Yang, K.; Huang, W. Y.; Hong, Y. X.; Li, J.; Zhang, M. J. et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 2021, 16, 599–605.

[25]

Arora, P.; White, R. E.; Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 3647–3667.

[26]

Liu, Y. J.; Tao, X. Y.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O. W.; Lu, G. X.; Lou, X. W. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745.

[27]

Wang, J.; Zhang, S. D.; Guo, S. J.; Lu, S. Q.; Xu, Y. S.; Li, J. Y.; Cao, A. M.; Wan, L. J. Stable 4.5 V LiCoO2 cathode material enabled by surface manganese oxides nanoshell. Nano Res. 2023, 16, 2480–2485.

[28]

Zhu, Z. Q.; Chen, X. D. Artificial interphase engineering of electrode materials to improve the overall performance of lithium-ion batteries. Nano Res. 2017, 10, 4115–4138.

[29]

Xie, J.; Zhao, J.; Liu, Y. Y.; Wang, H. T.; Liu, C.; Wu, T.; Hsu, P. C.; Lin, D. C.; Jin, Y.; Cui, Y. Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. Nano Res. 2017, 10, 3754–3764.

[30]

Sharifi-Asl, S.; Soto, F. A.; Foroozan, T.; Asadi, M.; Yuan, Y. F.; Deivanayagam, R.; Rojaee, R.; Song, B. A.; Bi, X. X.; Amine, K. et al. Anti-oxygen leaking LiCoO2. Adv. Funct. Mater. 2019, 29, 1901110.

[31]

Hudaya, C.; Halim, M.; Pröll, J.; Besser, H.; Choi, W.; Pfleging, W.; Seifert, H. J.; Lee, J. K. A polymerized C60 coating enhancing interfacial stability at three-dimensional LiCoO2 in high-potential regime. J. Power Sources 2015, 298, 1–7.

[32]

Zhang, F. C.; Dong, J. Y.; Yi, D.; Xia, J.; Lu, Z. J.; Yang, Y.; Wang, X. Archimedean polyhedron LiCoO2 for ultrafast rechargeable Li-ion batteries. Chem. Eng. J. 2021, 423, 130122.

[33]

Xue, L.; Savilov, S. V.; Lunin, V. V.; Xia, H. Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries. Adv. Funct. Mater. 2018, 28, 1705836.

[34]

Xia, H.; Wan, Y. H.; Assenmacher, W.; Mader, W.; Yuan, G. L.; Lu, L. Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries. NPG Asia Mater. 2014, 6, e126.

[35]

Lin, J.; Wu, J. W.; Fan, E. S.; Zhang, X. D.; Chen, R. J.; Wu, F.; Li, L. Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials. Int. J. Miner. Metall. Mater. 2022, 29, 942–952.

[36]

Li, J. H.; Zhang, Z. F.; Qin, C. D.; Jiang, Y. Y.; Han, X.; Xia, Y. M.; Sui, M.; Yan, P. F. Thermal-induced dopant precipitation enabling high-quality surface modification of LiCoO2. Small 2023, 19, 2303474.

[37]

Huang, S. H.; Wen, Z. Y.; Yang, X. L.; Gu, Z. H.; Xu, X. H. Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives. J. Power Sources 2005, 148, 72–77.

[38]

Kim, J.; Kang, H.; Go, N.; Jeong, S.; Yim, T.; Jo, Y. N.; Lee, K. T.; Mun, J. Egg-shell structured LiCoO2 by Cu2+ substitution to Li+ sites via facile stirring in an aqueous copper(II) nitrate solution. J. Mater. Chem. A 2017, 5, 24892–24900.

[39]

Xu, S. Y.; Tan, X. H.; Ding, W. Y.; Ren, W. J.; Zhao, Q.; Huang, W. Y.; Liu, J. J.; Qi, R.; Zhang, Y. X.; Yang, J. C. et al. Promoting surface electric conductivity for high-rate LiCoO2. Angew. Chem., Int. Ed. 2023, 135, e202218595.

[40]

Wu, N. T.; Zhang, Y.; Guo, Y.; Liu, S. J.; Liu, H.; Wu, H. Flakelike LiCoO2 with exposed {010} facets as a stable cathode material for highly reversible lithium storage. ACS Appl. Mater. Interfaces 2016, 8, 2723–2731.

[41]

Zhou, A. J.; Liu, Q.; Wang, Y.; Wang, W. H.; Yao, X.; Hu, W. T.; Zhang, L.; Yu, X. Q.; Li, J. Z.; Li, H. Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. J. Mater. Chem. A 2017, 5, 24361–24370.

[42]

Wang, M. C.; Feng, X. Y.; Xiang, H. F.; Feng, Y. Z.; Qin, C. D.; Yan, P. F.; Yu, Y. A novel protective strategy on high-voltage LiCoO2 cathode for fast charging applications: Li1.6Mg1.6Sn2.8O8 double layer structure via SnO2 surface modification. Small Methods 2019, 3, 1900355.

[43]

Qin, N.; Gan, Q. M.; Zhuang, Z. F.; Wang, Y. F.; Li, Y. Z.; Li, Z. Q.; Hussain, I.; Zeng, C.; Liu, G. Y.; Bai, Y. F. et al. Hierarchical doping engineering with active/inert dual elements stabilizes LiCoO2 to 4.6 V. Adv. Energy Mater. 2022, 12, 2201549.

[44]

Huang, W. Y.; Zhao, Q.; Zhang, M. J.; Xu, S. Y.; Xue, H. Y.; Zhu, C.; Fang, J. J.; Zhao, W. G.; Ren, G. X.; Qin, R. Z. et al. Surface design with cation and anion dual gradient stabilizes high-voltage LiCoO2. Adv. Energy Mater. 2022, 12, 2200813.

[45]

Zhang, J. X.; Wang, P. F.; Bai, P. X.; Wan, H. L.; Liu, S. F.; Hou, S.; Pu, X. J.; Xia, J. L.; Zhang, W. R.; Wang, Z. Y. et al. Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv. Mater. 2022, 34, 2108353.

[46]

Cai, M. Z.; Dong, Y. H.; Xie, M.; Dong, W. J.; Dong, C. L.; Dai, P.; Zhang, H.; Wang, X.; Sun, X. Z.; Zhang, S. N. et al. Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nat. Energy 2023, 8, 159–168.

[47]

Tan, X. H.; Zhao, T. Q.; Song, L. T.; Mao, D. D.; Zhang, Y. X.; Fan, Z. W.; Wang, H. F.; Chu, W. G. Simultaneous near-surface trace doping and surface modifications by gas–solid reactions during one-pot synthesis enable stable high-voltage performance of LiCoO2. Adv. Energy Mater. 2022, 12, 2200008.

[48]

Wang, L. L.; Ma, J.; Wang, C.; Yu, X. R.; Liu, R.; Jiang, F.; Sun, X. W.; Du, A. B.; Zhou, X. H.; Cui, G. L. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv. Sci. 2019, 6, 1900355.

[49]

Tan, X. H.; Mao, D. D.; Zhao, T. Q.; Zhang, Y. X.; Song, L. T.; Fan, Z. W.; Liu, G. Y.; Wang, H. F.; Chu, W. G. Long-term highly stable high-voltage LiCoO2 synthesized via a solid sulfur-assisted one-pot approach. Small 2022, 18, 2202143.

[50]

Zhang, Q.; Zhou, W. Y.; Xia, X. G.; Li, K. W.; Zhang, N.; Wang, Y. C.; Xiao, Z. J.; Fan, Q. X.; Kauppinen, E. I.; Xie, S. S. Transparent and freestanding single-walled carbon nanotube films synthesized directly and continuously via a blown aerosol technique. Adv. Mater. 2020, 32, 2004277.

[51]

Julien, C.; Massot, M. Spectroscopic studies of the local structure in positive electrodes for lithium batteries. Phys. Chem. Chem. Phys. 2002, 4, 4226–4235.

[52]

Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

[53]

Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 2010, 10, 4123–4127.

[54]

Cai, Z. J.; Ji, H. W.; Ha, Y.; Liu, J.; Kwon, D. H.; Zhang, Y. Q.; Urban, A.; Foley, E. E.; Giovine, R.; Kim, H. et al. Realizing continuous cation order-to-disorder tuning in a class of high-energy spinel-type Li-ion cathodes. Matter 2021, 4, 3897–3916.

[55]

Jo, M.; Hong, Y. S.; Choo, J.; Cho, J. Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J. Electrochem. Soc. 2009, 156, A430.

[56]

Delluva, A. A.; Kulberg-Savercool, J.; Holewinski, A. Decomposition of trace Li2CO3 during charging leads to cathode interface degradation with the solid electrolyte LLZO. Adv. Funct. Mater. 2021, 31, 2103716.

[57]

Tian, T.; Zhang, T. W.; Yin, Y. C.; Tan, Y. H.; Song, Y. H.; Lu, L. L.; Yao, H. B. Blow-spinning enabled precise doping and coating for improving high-voltage lithium cobalt oxide cathode performance. Nano Lett. 2020, 20, 677–685.

[58]

Ponraj, R.; Kannan, A. G.; Ahn, J. H.; Lee, J. H.; Kang, J.; Han, B.; Kim, D. W. Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium-sulfur cells with enhanced cycling stability. ACS Appl. Mater. Interfaces 2017, 9, 38445–38454.

[59]

Pang, Y.; Wei, J. S.; Wang, Y. G.; Xia, Y. Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702288.

[60]

Zhou, W. B.; Fan, Q. X.; Zhang, Q.; Cai, L.; Li, K. W.; Gu, X. G.; Yang, F.; Zhang, N.; Wang, Y. C.; Liu, H. P. et al. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat. Commun. 2017, 8, 14886.

[61]

Fan, Q. X.; Zhang, Q.; Zhou, W. B.; Xia, X. G.; Yang, F.; Zhang, N.; Xiao, S. Q.; Li, K. W.; Gu, X. G.; Xiao, Z. J. et al. Novel approach to enhance efficiency of hybrid silicon-based solar cells via synergistic effects of polymer and carbon nanotube composite film. Nano Energy 2017, 33, 436–444.

[62]

Xia, X. G.; Zhang, Q.; Zhou, W. B.; Mei, J.; Xiao, Z. J.; Xi, W.; Wang, Y. C.; Xie, S. S.; Zhou, W. Y. Integrated, highly flexible, and tailorable thermoelectric type temperature detectors based on a continuous carbon nanotube fiber. Small 2021, 17, 2102825.

[63]

Hou, J. B.; Yang, M.; Wang, D. Y.; Zhang, J. L. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 2020, 10, 1904152.

[64]

Xu, J. J. Critical Review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 2022, 14, 166.

[65]

Zhang, W.; Cheng, F. Y.; Chang, M.; Xu, Y.; Li, Y. Y.; Sun, S. X.; Wang, L.; Xu, L. M.; Li, Q.; Fang, C. et al. Surface-interspersed nanoparticles induced cathode-electrolyte interphase enabling stable cycling of high-voltage LiCoO2. Nano Energy 2024, 119, 109031.

[66]

Dedryvère, R.; Martinez, H.; Leroy, S.; Lemordant, D.; Bonhomme, F.; Biensan, P.; Gonbeau, D. Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study. J. Power Sources 2007, 174, 462–468.

[67]

Liu, Z. H.; Wang, C.; Guo, X. M.; Cheng, S. K.; Gao, Y. H.; Wang, R.; Sun, Y. H.; Yan, P. Thermal characteristics of ultrahigh power density lithium-ion battery. J. Power Sources 2021, 506, 230205.

[68]

Lu, W.; Zhang, J. S.; Xu, J. J.; Wu, X. D.; Chen, L. W. In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling. ACS Appl. Mater. Interfaces 2017, 9, 19313–19318.

[69]

Ji, Y.; Jafvert, C. T.; Zyaykina, N. N.; Zhao, F. Decomposition of PVDF to delaminate cathode materials from end-of-life lithium-ion battery cathodes. J. Clean. Prod. 2022, 367, 133112.

[70]

Amin-Sanayei, R.; He, W. S. Application of polyvinylidene fluoride binders in lithium-ion battery. In Advanced Fluoride-Based Materials for Energy Conversion. Nakajima, T.; Groult, H., Eds.; Elsevier: Amsterdam, 2015; pp 225–235.

[71]

Tebbe, J. L.; Holder, A. M.; Musgrave, C. B. Mechanisms of LiCoO2 cathode degradation by reaction with HF and protection by thin oxide coatings. ACS Appl. Mater. Interfaces 2015, 7, 24265–24278.

[72]

Li, J. C.; Yu, S. Q.; Zhu, D.; Zhou, W. H.; He, J.; Zeng, L.; Chen, S. Q.; Ma, B. H.; Xi, H. N.; Wu, C. L. et al. Unraveling the synergistic effects and mechanisms of nano-carbon modification on metal hydride alloys for enhanced electrochemical performance in energy storage applications. Chem. Eng. J. 2023, 474, 145985.

[73]

Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.

[74]

Ensling, D.; Cherkashinin, G.; Schmid, S.; Bhuvaneswari, S.; Thissen, A.; Jaegermann, W. Nonrigid band behavior of the electronic structure of LiCoO2 thin film during electrochemical Li deintercalation. Chem. Mater. 2014, 26, 3948–3956.

[75]

Li, T. Y.; Yuan, X. Z.; Zhang, L.; Song, D. T.; Shi, K. Y.; Bock, C. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem. Energy Rev. 2020, 3, 43–80.

[76]

Chen, X.; Yao, N.; Zeng, B. S.; Zhang, Q. Ion-solvent chemistry in lithium battery electrolytes: From mono-solvent to multi-solvent complexes. Fundam. Res. 2021, 1, 393–398.

[77]

Rinkel, B. L. D.; Vivek, J. P.; Garcia-Araez, N.; Grey, C. P. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries. Energy Environ. Sci. 2022, 15, 3416–3438.

[78]

Ye, J. C.; Baumgaertel, A. C.; Wang, Y. M.; Biener, J.; Biener, M. M. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. ACS Nano 2015, 9, 2194–2202.

Nano Research
Pages 7230-7241
Cite this article:
Xi W, Xia X, Zhu J, et al. Enhancing electrochemical capacity and interfacial stability of lithium-ion batteries through side reaction modulation with ultrathin carbon nanotube film and optimized lithium cobalt oxide particle size. Nano Research, 2024, 17(8): 7230-7241. https://doi.org/10.1007/s12274-024-6752-9
Topics:

429

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 February 2024
Revised: 29 April 2024
Accepted: 12 May 2024
Published: 20 June 2024
© Tsinghua University Press 2024
Return