AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synaptic a-Si:H/a-Ga2O3 phototransistor inspired by the phototaxis behavior of organisms with all-optical and all-electrical stimulation modes

Youngbin Yoon1Youngki Kim1Soowon Choi2,3Jungdae Kwon2Myunghun Shin1( )
School of Electronics and Information Engineering, Korea Aerospace University, Goyang, 10540, Republic of Korea
Nano Materials Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

The developed synaptic a-Si:H/a-Ga2O3 phototransistor realizes neurological synaptic operation under both all-optical and all-electrical stimulation. The all-optical weight modulation function is applied to the wavelength-differential behavior response of zebrafish, successfully mimicking the organism’s phototaxis behavior.

Abstract

To improve neuromorphic computing performance, neuromorphic system components should mimic the behaviors of organic systems. In this study, a synaptic a-Si:H/a-Ga2O3 phototransistor featuring all-optical and -electrical emulation is fabricated in a manner advantageous for complementary metal-oxide-semiconductor process integration. The phototransistor exhibits excitatory and inhibitory synaptic behaviors under stimulation by both optical and electrical signals. It mimics several essential synaptic functions, including excitatory postsynaptic current, inhibitory postsynaptic current, short-term memory, long-term memory, paired-pulse facilitation, and spike-timing-dependent plasticity. The optical and electrical modulation mechanisms are confirmed to arise from the a-Si:H/a-Ga2O3 heterojunction structure and interface effects, and the device is shown to operate at low power in both optical and electrical modes. The all-optical weight modulation function is applied to the wavelength-differential behavior response of zebrafish, successfully mimicking the color perception process of the organism. Finally, to verify the translation of the optoelectrical-derived synaptic behaviors of the phototransistor into artificial neuromorphic computation, handwritten digit image recognition of the Modified National Institute of Standards and Technology dataset is performed by a convolutional neural network, with a demonstrated average learning accuracy of 98.46%. These findings verify the applicability of the synaptic a-Si:H/a-Ga2O3 phototransistor in neuromorphic computing.

Electronic Supplementary Material

Download File(s)
6754_ESM.pdf (1.7 MB)

References

[1]

Drachman, D. A. Do we have brain to spare. Neurology 2005, 64, 2004–2005.

[2]

Ham, D.; Park, H.; Hwang, S.; Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 2021, 4, 635–644.

[3]

Chen, W. B.; Song, L. K.; Wang, S. B.; Zhang, Z. Y.; Wang, G. Y.; Hu, G. G.; Gao, S. Essential characteristics of memristors for neuromorphic computing. Adv. Electron. Mater. 2023, 9, 2200833.

[4]

Leng, Y. B.; Zhang, Y. Q.; Lv, Z. Y.; Wang, J. J.; Xie, T.; Zhu, S. R.; Qin, J. R.; Xu, R. Z.; Zhou, Y.; Han, S. T. Recent progress in multiterminal memristors for neuromorphic applications. Adv. Electron. Mater. 2023, 9, 2300108.

[5]

Dai, S. L.; Zhao, Y. W.; Wang, Y.; Zhang, J. Y.; Fang, L.; Jin, S.; Shao, Y. L.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700.

[6]

Liu, Q.; Gao, S.; Xu, L.; Yue, W. J.; Zhang, C. W.; Kan, H.; Li, Y.; Shen, G. Z. Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 2022, 51, 3341–3379.

[7]

Wang, W. X.; Gao, S.; Li, Y.; Yue, W. J.; Kan, H.; Zhang, C. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Artificial optoelectronic synapses based on TiN x O2− x /MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 2021, 31, 2101201.

[8]

Li, R. L.; Wang, W. X.; Li, Y.; Gao, S.; Yue, W. J.; Shen, G. Z. Multi-modulated optoelectronic memristor based on Ga2O3/MoS2 heterojunction for bionic synapses and artificial visual system. Nano Energy 2023, 111, 108398.

[9]

Xia, Q. F.; Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323.

[10]

Chen, X.; Chen, B. K.; Jiang, B.; Gao, T. F.; Shang, G.; Han, S. T.; Kuo, C. C.; Roy, V. A. L.; Zhou, Y. Nanowires for UV–vis–IR optoelectronic synaptic devices. Adv. Funct. Mater. 2023, 33, 2208807.

[11]

Shao, H.; Li, Y. Q.; Chen, J. F.; Yang, W.; Wang, L.; Fu, J. W.; Wang, Y. R.; Ling, H. F.; Xie, L. H.; Huang, W. Mimicking evasive behavior in wavelength-dependent reconfigurable phototransistors with ultralow power consumption. SmartMat 2023, e1230.

[12]

Shan, X. Y.; Zhao, C. Y.; Wang, X. N.; Wang, Z. Q.; Fu, S. C.; Lin, Y.; Zeng, T.; Zhao, X. N.; Xu, H. Y.; Zhang, X. T. et al. Plasmonic optoelectronic memristor enabling fully light-modulated synaptic plasticity for neuromorphic vision. Adv. Sci. 2022, 9, 2104632.

[13]

Yin, L.; Han, C.; Zhang, Q. T.; Ni, Z. Y.; Zhao, S. Y.; Wang, K.; Li, D. S.; Xu, M. S.; Wu, H. Q.; Pi, X. D. et al. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy 2019, 63, 103859.

[14]

Mi, Y. C.; Yang, C. H.; Shih, L. C.; Chen, J. S. All-optical-controlled excitatory and inhibitory synaptic signaling through bipolar photoresponse of an oxide-based phototransistor. Adv. Opt. Mater. 2023, 11, 2300089.

[15]

Islam, M. M.; Dev, D.; Krishnaprasad, A.; Tetard, L.; Roy, T. Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rep. 2020, 10, 21870.

[16]

Chen, Y. T.; Zhang, M.; Li, D. W.; Tang, Y. J.; Ren, H. H.; Li, J. Y.; Liang, K.; Wang, Y.; Wen, L. Y.; Li, W. B. et al. Bidirectional synaptic phototransistor based on two-dimensional ferroelectric semiconductor for mixed color pattern recognition. ACS Nano 2023, 17, 12499–12509.

[17]

Yoon, Y.; Kim, Y.; Hwang, W. S.; Shin, M. Biological UV photoreceptors-inspired Sn-doped polycrystalline β-Ga2O3 optoelectronic synaptic phototransistor for neuromorphic computing. Adv. Electron. Mater. 2023, 9, 2300098.

[18]

Roy, S.; Jun, N. Y.; Davis, E. L.; Pearson, J.; Field, G. D. Inter-mosaic coordination of retinal receptive fields. Nature 2021, 592, 409–413.

[19]

Storz, U. C.; Paul, R. J. Phototaxis in water fleas ( Daphnia magna) is differently influenced by visible and UV light. J. Comp. Physiol. A 1998, 183, 709–717.

[20]

Otsuna, H.; Shinomiya, K.; Ito, K. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior. Front. Neural Circuits 2014, 8, 8.

[21]

Albrecht, J.; Neuschulz, E. L.; Farwig, N. Impact of habitat structure and fruit abundance on avian seed dispersal and fruit predation. Basic Appl. Ecol. 2012, 13, 347–354.

[22]

Richardson, R.; Tracey-White, D.; Webster, A.; Moosajee, M. The zebrafish eye—A paradigm for investigating human ocular genetics. Eye 2017, 31, 68–86.

[23]

Choi, S. W.; Yang, J.; Park, J. H.; Han, S. J.; Song, P.; Kang, D. W.; Kwon, J. D. P/i interfacial engineering in semi-transparent silicon thin film solar cells for fabrication at a low temperature of 150 °C. Curr. Appl. Phys. 2019, 19, 1120–1126.

[24]

Kumar, S. S.; Rubio, E. J.; Noor-A-Alam, M.; Martinez, G.; Manandhar, S.; Shutthanandan, V.; Thevuthasan, S.; Ramana, C. V. Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films. J. Phys. Chem. C 2013, 117, 4194–4200.

[25]

Li, Y. Y.; Wang, Y.; Yin, L.; Huang, W.; Peng, W. B.; Zhu, Y. Y.; Wang, K.; Yang, D. R.; Pi, X. D. Silicon-based inorganic–organic hybrid optoelectronic synaptic devices simulating cross-modal learning. Sci. China Inf. Sci. 2021, 64, 162401.

[26]

Bhattacharjee, S.; Wigchering, R.; Manning, H. G.; Boland, J. J.; Hurley, P. K. Emulating synaptic response in n- and p-channel MoS2 transistors by utilizing charge trapping dynamics. Sci. Rep. 2020, 10, 12178.

[27]

Koo, J. B.; Ku, C. H.; Lim, S. C.; Kim, S. H.; Lee, J. H. Hysteresis and threshold voltage shift of pentacene thin-film transistors and inverters with Al2O3 gate dielectric. Appl. Phys. Lett. 2007, 90, 133503.

[28]

Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.

[29]

Dobrunz, L. E.; Huang, E. P.; Stevens, C. F. Very short-term plasticity in hippocampal synapses. Proc. Natl. Acad. Sci. USA 1997, 94, 14843–14847.

[30]

Zucker, R. S.; Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405.

[31]

van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Talin, A. A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 2017, 16, 414–418.

[32]

Xu, W. T.; Min, S. Y.; Hwang, H.; Lee, T. W. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2016, 2, e1501326.

[33]

Tian, H.; Cao, X.; Xie, Y. J.; Yan, X. D.; Kostelec, A.; DiMarzio, D.; Chang, C.; Zhao, L. D.; Wu, W.; Tice, J. et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 2017, 11, 7156–7163.

[34]

Yang, R.; Huang, H. M.; Hong, Q. H.; Yin, X. B.; Tan, Z. H.; Shi, T.; Zhou, Y. X.; Miao, X. S.; Wang, X. P.; Mi, S. B. et al. Synaptic suppression triplet-STDP learning rule realized in second-order memristors. Adv. Funct. Mater. 2018, 28, 1704455.

[35]

Bi, G. Q.; Poo, M. M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 2001, 24, 139–166.

[36]

Caporale, N.; Dan, Y. Spike timing-dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46.

[37]

Froemke, R. C.; Dan, Y. Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 2002, 416, 433–438.

[38]

Yu, H. Y.; Zhao, X. L.; Tan, M. Y.; Wang, B.; Zhang, M. X.; Wang, X.; Guo, S. L.; Tong, Y. H.; Tang, Q. X.; Liu, Y. C. Ultraflexible and ultrasensitive near-infrared organic phototransistors for hemispherical biomimetic eyes. Adv. Funct. Mater. 2022, 32, 2206765.

[39]

Lee, M.; Lee, G. J.; Jang, H. J.; Joh, E.; Cho, H.; Kim, M. S.; Song, Y. M.; Kim, H. M.; Kang, K. M.; Lee, J. H. et al. An amphibious artificial vision system with a panoramic visual field. Nat. Electron. 2022, 5, 452–459.

[40]

Wang, Y.; Gong, Y.; Huang, S. M.; Xing, X. C.; Lv, Z. Y.; Wang, J. J.; Yang, J. Q.; Zhang, G. H.; Zhou, Y.; Han, S. T. Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 2021, 12, 5979.

[41]

Ng, S. E.; Yang, J. T.; John, R. A.; Mathews, N. Adaptive latent inhibition in associatively responsive optoelectronic synapse. Adv. Funct. Mater. 2021, 31, 2100807.

[42]
Martin, E. A. Macmillan Dictionary of Life Sciences; 2nd ed. Macmillan Press: London, 1983.
[43]

Gagetti, B. L.; Piratelli, A. J.; Piña-Rodrigues, F. C. M. Fruit color preference by birds and applications to ecological restoration. Braz. J. Biol. 2016, 76, 955–966.

[44]

Guggiana-Nilo, D. A.; Engert, F. Properties of the visible light phototaxis and UV avoidance behaviors in the larval zebrafish. Front. Behav. Neurosci. 2016, 10, 160.

[45]

Zhou, M. Y.; Bear, J.; Roberts, P. A.; Janiak, F. K.; Semmelhack, J.; Yoshimatsu, T.; Baden, T. Zebrafish retinal ganglion cells asymmetrically encode spectral and temporal information across visual space. Curr. Biol. 2020, 30, 2927–2942.e7.

[46]
Yu, S. M.; Chen, P. Y.; Cao, Y.; Xia, L. X.; Wang, Y.; Wu, H. Q. Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect. In Proceedings of 2015 IEEE International Electron Devices Meeting, Washington, USA, 2015, pp 17.3.1–17.3.4.
[47]
Jerry, M.; Chen, P. Y.; Zhang, J. C.; Sharma, P.; Ni, K.; Yu, S. M.; Datta, S. Ferroelectric FET analog synapse for acceleration of deep neural network training. In Proceedings of 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017, pp 6.2.1–6.2.4.
Nano Research
Pages 7631-7642
Cite this article:
Yoon Y, Kim Y, Choi S, et al. Synaptic a-Si:H/a-Ga2O3 phototransistor inspired by the phototaxis behavior of organisms with all-optical and all-electrical stimulation modes. Nano Research, 2024, 17(8): 7631-7642. https://doi.org/10.1007/s12274-024-6754-7
Topics:

455

Views

0

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 March 2024
Revised: 08 May 2024
Accepted: 12 May 2024
Published: 18 June 2024
© Tsinghua University Press 2024
Return