AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible piezoelectret film sensor for noncontact mechanical signal capture by multiple transmission media

Xingchen Ma1,§Qianqian Hu1,§Lian Zhou1Xinhao Xiang2,3Yi Qin1Ke Zhang2,3Pengfei He4Ying Dai4( )Wenxin Niu2,3( )Xiaoqing Zhang1( )
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
Department of Rehabilitation Sciences, Tongji University School of Medicine, Shanghai 200092, China
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

§ Xingchen Ma and Qianqian Hu contributed equally to this work.

Show Author Information

Graphical Abstract

We report a self-powered flexible sensor integrated with irradiation cross-linked polypropylene (IXPP) piezoelectret film for noncontact sensing, featuring multi-functions to detect mechanical signals transmitted through solid, liquid and gaseous media and would facilitate their versatile practical applications. The developed film sensors for monitoring exercise postures and physiological signals without direct contact between human body and the sensor has been demonstrated, displaying great potential to be incorporated into future smart electronics.

Abstract

Mechanical signal capture without physical contact has emerged as a highly promising research field and attracted tremendous attention due to its prosperous applications in household medical care, lifestyle monitoring and remote operation, offering users high level of safety, convenience and comfort. Moreover, noncontact sensing is ideal to maximize the immersive user experience in the human–machine interaction (HMI), eliminating interference to human activities and mechanical fatigue to the sensor, simultaneously. Herein, we report a self-powered flexible sensor integrated with irradiation cross-linked polypropylene (IXPP) piezoelectret film for noncontact sensing, featuring multi-functions to detect mechanical signals transmitted through solid, liquid and gaseous media and would facilitate their versatile practical applications. The folded-structure configuration of the sensor facilitates the improvement of the noncontact sensing sensitivity. For solid media, such as the rectangular wooden stick used in this study, the sensor can detect mechanical stimulus exerted at a distance of 100 cm. A system detection sensitivity up to 57 pC/kPa with a low detection limit of 0.6 kPa is achieved at a noncontact distance of 10 cm. Even when partly or completely immersed in water, the sensor effectively traces movement signals of human bodies underwater, demonstrating great advantages for non-inductive aquatic fitness training monitoring. Furthermore, due to the low acoustic impedance of piezoelectret film, speech recognition through gaseous medium is also achieved. We further introduce application demonstrations of the developed film sensors to monitor exercise postures and physiological signals without direct contact between human body and the sensor, displaying great potential to be incorporated into future smart electronics. This study commendably expands the application scope of piezoelectret materials, which will have profound implications for exploring novel intelligent human–machine interactions.

Electronic Supplementary Material

Video
6755_ESM2.mp4
6755_ESM3.mp4
Download File(s)
6755_ESM1.pdf (1.3 MB)

References

[1]

Chen, B.; Wu, M. Y.; Fang, S. W.; Cao, Y. D.; Pei, L. Y.; Zhong, H. B.; Sun, C.; Lin, X. L.; Li, X. Y.; Shen, J. F. et al. Liquid metal-tailored PEDOT: PSS for noncontact flexible electronics with high spatial resolution. ACS Nano 2022, 16, 19305–19318.

[2]

Zhou, H.; Huang, W.; Xiao, Z.; Zhang, S. C.; Li, W. Z.; Hu, J. H.; Feng, T. X.; Wu, J.; Zhu, P. C.; Mao, Y. C. Deep-learning-assisted noncontact gesture-recognition system for touchless human–machine interfaces. Adv. Funct. Mater. 2022, 32, 2208271.

[3]

Wang, B. B.; Gao, M.; Fu, X. F.; Geng, M. C.; Liu, Y.; Cheng, N. X.; Li, J.; Li, L. H.; Zhang, Z. J.; Song, Y. L. 3D printing deep-trap hierarchical architecture-based non-contact sensor for multi-direction motion monitoring. Nano Energy 2023, 107, 108135

[4]

Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020, 30, 1907893.

[5]

Shrestha, K.; Sharma, S.; Pradhan, G. B.; Bhatta, T.; Maharjan, P.; Rana, S. S.; Lee, S.; Seonu, S.; Shin, Y.; Park, J. Y. A siloxene/ecoflex nanocomposite-based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self-powered touchless sensor applications. Adv. Funct. Mater. 2022, 32, 2113005.

[6]

Chen, S. W.; Wu, N.; Ma, L.; Lin, S. Z.; Yuan, F.; Xu, Z. S.; Li, W. B.; Wang, B.; Zhou, J. Noncontact heartbeat and respiration monitoring based on a hollow microstructured self-powered pressure sensor. ACS Appl. Mater. Interfaces 2018, 10, 3660–3667.

[7]

Lu, L. J.; Jiang, C. P.; Hu, G. S.; Liu, J. Q.; Yang, B. Flexible noncontact sensing for human–machine interaction. Adv. Mater. 2021, 33, 2100218.

[8]

Zheng, Y. N.; Yu, Z.; Mao, G. Y.; Li, Y. Y.; Pravarthana, D.; Asghar, W.; Liu, Y. W.; Qu, S. X.; Shang, J.; Li, R. W. A wearable capacitive sensor based on ring/disk-shaped electrode and porous dielectric for noncontact healthcare monitoring. Glob. Chall. 2020, 4, 1900079.

[9]

Chen, B.; Wang, W. L.; Hu, G. J.; Zhong, R. Z.; Su, X. Y.; Zhi, H. P.; Niu, W. X. Concurrent validity of a markerless motion capture system for the assessment of shoulder functional movement. Med. Novel Technol. Dev. 2022, 15, 100131.

[10]

Huang, S. J.; Dai, H. D.; Yu, X. M.; Wu, X.; Wang, K.; Hu, J. X.; Yao, H. C.; Huang, R.; Niu, W. X. A contactless monitoring system for accurately predicting energy expenditure during treadmill walking based on an ensemble neural network. iScience 2024, 27, 109093.

[11]

Oyedotun, O. K.; Khashman, A. Deep learning in vision-based static hand gesture recognition. Neural Comput. Appl. 2017, 28, 3941–3951.

[12]

Abuella, H.; Ekin, S. Non-contact vital signs monitoring through visible light sensing. IEEE Sens. J. 2020, 20, 3859–3870.

[13]
Guo, X. W.; Guo, S. W.; Zhao, Y. X.; Shi, J. M. Research on the key technology of non-contact vital signs monitoring. In 2023 6 th International Conference on Computer Network, Electronic and Automation (ICCNEA), Xi’an, China, 2023, pp 249–253.
[14]

Kamijo, T.; Van Breemen, A. J. J. M.; Ma, X.; Shanmugam, S.; Bel, T.; De Haas, G.; Peeters, B.; Petre, R.; Tordera, D.; Verbeek, R. et al. A touchless user interface based on a near-infrared-sensitive transparent optical imager. Nat. Electron. 2023, 6, 451–461.

[15]

Singh, A.; Rehman, S. U.; Yongchareon, S.; Chong, P. H. J. Multi-resident non-contact vital sign monitoring using radar: A review. IEEE Sens. J. 2021, 21, 4061–4084.

[16]

Bermúdez, G. S. C.; Karnaushenko, D. D.; Karnaushenko, D.; Lebanov, A.; Bischoff, L.; Kaltenbrunner, M.; Fassbender, J.; Schmidt, O. G.; Makarov, D. Magnetosensitive e-skins with directional perception for augmented reality. Sci. Adv. 2018, 4, eaao2623.

[17]

Ge, J.; Wang, X.; Drack, M.; Volkov, O.; Mo, L.; Bermúdez, G. S. C.; Illing, R.; Wang, C. G.; Zhou, S. Q.; Fassbender, J. et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 2019, 10, 4405.

[18]

Chen, S. C.; Wang, Y. F.; Yang, L.; Guo, Y. J.; Wang, M.; Sun, K. Flexible and transparent sensors with hierarchically micro-nano texture for touchless sensing and controlling. Nano Energy 2021, 82, 105719.

[19]
Chen, Z. J.; Wang, Y. C.; Zhang, Z. T.; Mei, D. Q.; Liu, W. J. Flexible dual-mode sensor with accurate contact pressure sensing and contactless distance detection functions for robotic perception. J. Intell. Manuf., in press, DOI: 10.1007/s10845-023-02314-x.
[20]

Guo, H. J.; Jia, X. T.; Liu, L.; Cao, X.; Wang, N.; Wang, Z. L. Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano 2018, 12, 3461–3467.

[21]

Guo, Z. H.; Wang, H. L.; Shao, J. J.; Shao, Y. S.; Jia, L. Y.; Li, L. W.; Pu, X.; Wang, Z. L. Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci. Adv. 2022, 8, eabo5201.

[22]

Feng, T. X.; Ling, D.; Li, C. Y.; Zheng, W. T.; Zhang, S. C.; Li, C.; Emel’yanov, A.; Pozdnyakov, A. S.; Lu, L. J.; Mao, Y. C. Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 2024, 17, 4462–4470.

[23]
Horsley, D. A.; Rozen, O.; Lu, Y. P.; Shelton, S.; Guedes, A.; Przybyla, R.; Tang, H. Y.; Boser, B. E. Piezoelectric micromachined ultrasonic transducers for human–machine interfaces and biometric sensing. In 2015 IEEE SENSORS, 2015, pp 1–4.
[24]

Chu, Y.; Zhong, J. W.; Liu, H. L.; Ma, Y.; Liu, N.; Song, Y.; Liang, J. M.; Shao, Z. C.; Sun, Y.; Dong, Y. et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 2018, 28, 1803413.

[25]

Dali, O. B.; Zhukov, S.; Chadda, R.; Kasanski, A.; Von Seggern, H. V.; Zhang, X. Q.; Sessler, G. M.; Kupnik, M. Eco-friendly high-sensitive piezoelectrets for force myography. IEEE Sens. J. 2023, 23, 1943–1951.

[26]

Han, L. Y.; Zeng, W.; Dong, Y.; Wang, X. H.; Lin, L. W. Mapping and simultaneous detection of arterial and venous pulses using large-scale high-density flexible piezoelectret sensor array. Adv. Electron. Mater. 2022, 8, 2200012.

[27]

Wang, N. Z.; Daniels, R.; Connelly, L.; Sotzing, M.; Wu, C.; Gerhard, R.; Sotzing, G. A.; Cao, Y. All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered body area networks. Small 2021, 17, 2103161.

[28]

Mo, X. W.; Zhou, H.; Li, W. B.; Xu, Z. S.; Duan, J. J.; Huang, L.; Hu, B.; Zhou, J. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 2019, 65, 104033.

[29]

Han, L. Y.; Liang, W. J.; Xie, Q. S.; Zhao, J. J.; Dong, Y.; Wang, X. H.; Lin, L. W. Health monitoring via heart, breath, and korotkoff sounds by wearable piezoelectret patches. Adv. Sci. 2023, 10, 2301180.

[30]

Xiang, X. H.; Ma, X. C.; Zhou, L.; Sessler, G. M.; Von Seggern, H.; Dali, O. B.; Kupnik, M.; He, P. F.; Dai, Y.; Zhang, X. Q. Threadlike piezoelectric sensors based on ferroelectrets and their application in washable and breathable smart clothing. Adv. Mater. Technol. 2023, 8, 2202130.

[31]

Ruan, Z. H.; Hu, Q. Q.; Zhang, M.; Liu, W. L.; Zhu, G. D.; Chen, M.; Zhang, X. Q. Ultralight and sensitive ferroelectret films with a human skin-like texture. Appl. Phys. Lett. 2023, 122, 242904.

[32]

Ma, X. C.; Qi, Y.; Niu, Y. Y.; Zhang, Q.; Xiang, X. H.; Zhang, K.; He, P. F.; Dai, Y.; Niu, W. X.; Zhang, X. Q. Highly sensitive, ultra-reliable flexible piezoelectret sensor for non-contact sitting motion tracking and physiological signal monitoring. Nano Energy 2023, 111, 108424.

[33]

Hu, Q. Q.; Zhou, L. A.; Ma, X. C.; Zhang, X. Q. Biodegradable, bifunctional electro-acoustic transducers based on cellular polylactic acid ferroelectrets for sustainable flexible electronics. ACS Appl. Mater. Interfaces 2024, 16, 3876–3887.

[34]

Shi, Q. F.; Yang, Y. Q.; Sun, Z. D.; Lee, C. Progress of advanced devices and internet of things systems as enabling technologies for smart homes and health care. ACS Mater. Au 2022, 2, 394–435.

[35]

Chen, S. W.; Wu, N.; Lin, S. Z.; Duan, J. J.; Xu, Z. S.; Pan, Y.; Zhang, H. B.; Xu, Z. H.; Huang, L.; Hu, B. et al. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy 2020, 70, 104460.

[36]

Mohebbi, A.; Mighri, F.; Ajji, A.; Rodrigue, D. Cellular polymer ferroelectret: A review on their development and their piezoelectric properties. Adv. Polym. 2018, 37, 468–483.

[37]

Sessler, G. M.; Pondrom, P.; Zhang, X. Stacked and folded piezoelectrets for vibration-based energy harvesting. Phase Transit. 2016, 89, 667–677.

[38]

Zhang, X. Q.; Huang, J. F.; Chen, J. B.; Wan, Z. M.; Wang, S.; Xia, Z. F. Piezoelectric properties of irradiation-crosslinked polypropylene ferroelectrets. Appl. Phys. Lett. 2007, 91, 182901.

[39]

Zhang, X. Q.; Zhang, X. W.; You, Q.; Sessler, G. M. Low-cost, large-area, stretchable piezoelectric films based on irradiation-crosslinked poly(propylene). Macromol. Mater. Eng. 2014, 299, 290–295.

[40]

Liu, R. Y.; Lai, Y.; Li, S. X.; Wu, F.; Shao, J. M.; Liu, D.; Dong, X.; Wang, J.; Wang, Z. L. Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing. Nano Energy 2022, 95, 107056.

[41]

Ma, J. M.; Zhu, J. Q.; Ma, P.; Jie, Y.; Wang, Z. L.; Cao, X. Fish bladder film-based triboelectric nanogenerator for noncontact position monitoring. ACS Energy Lett. 2020, 5, 3005–3011.

[42]

Kim, D. S.; Lee, J. S. Propagation and attenuation characteristics of various ground vibrations. Soil Dyn. Earthq. Eng. 2000, 19, 115–126.

[43]

Nagle, E. F.; Sanders, M. E.; Franklin, B. A. Aquatic high intensity interval training for cardiometabolic health: Benefits and training design. Am. J. Lifestyle Med. 2016, 11, 64–76.

[44]

Tzeng, J. I.; Wu, E. M. W.; Ku, P. H. Therapeutic swimming. J. Jpn Soc. Balneol. Climatol. Phys. Med. 2014, 77, 563–564.

[45]

Wilcock, I. M.; Cronin, J. B.; Hing, W. A. Physiological response to water immersion: A method for sport recovery. Sports Med. 2006, 36, 747–765.

[46]

Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y. et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Res. 2018, 11, 3771–3779.

[47]

Chen, J. R.; Chen, K.; Jin, J. Q.; Wu, K.; Wang, Y. Q.; Zhang, J. Y.; Liu, G.; Sun, J. Outstanding synergy of sensitivity and linear range enabled by multigradient architectures. Nano Lett. 2023, 23, 11958–11967.

[48]

Eom, K.; Shin, Y. E.; Kim, J. K.; Joo, S. H.; Kim, K.; Kwak, S. K.; Ko, H.; Jin, J.; Kang, S. J. Tailored Poly(vinylidene fluoride-co-trifluoroethylene) crystal orientation for a triboelectric nanogenerator through epitaxial growth on a chitin nanofiber film. Nano Lett. 2020, 20, 6651–6659.

[49]

Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fus. 2017, 35, 68–80.

[50]

Liu, W. J.; Xiang, F. H.; Mei, D. Q.; Wang, Y. C. A flexible dual-mode capacitive sensor for highly sensitive touchless and tactile sensing in human–machine interactions. Adv. Mater. Technol. 2024, 9, 2301685.

[51]

Wang, H. L.; Chen, T. Y.; Zhang, B. J.; Wang, G. H.; Yang, X. D.; Wu, K. L.; Wang, Y. F. A dual-responsive artificial skin for tactile and touchless interfaces. Small 2023, 19, 2206830.

[52]

Zheng, K.; Gu, F.; Wei, H. J.; Zhang, L. J.; Chen, X. A.; Jin, H. L.; Pan, S.; Chen, Y. H.; Wang, S. Flexible, permeable, and recyclable liquid-metal-based transient circuit enables contact/noncontact sensing for wearable human–machine interaction. Small Methods 2023, 7, 2201534.

Nano Research
Pages 7643-7657
Cite this article:
Ma X, Hu Q, Zhou L, et al. Flexible piezoelectret film sensor for noncontact mechanical signal capture by multiple transmission media. Nano Research, 2024, 17(8): 7643-7657. https://doi.org/10.1007/s12274-024-6755-6
Topics:

689

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 08 April 2024
Revised: 05 May 2024
Accepted: 12 May 2024
Published: 02 July 2024
© Tsinghua University Press 2024
Return