AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Room-temperature and atmospheric-pressure hydrogenation of lignin-derived phenol to KA oil by Pt/NiO@MOFs

Fengbin Zheng1,2Kun Wang1,2Yifei Ren2Bohua Wang2Wenxing Chen3Caoyu Yang2,4Shengxian Shao2,4Yinglong Wang1( )Zhiyong Tang2,4Guodong Li2,4( )
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100181, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

This work shows fabricating ultrasmall Pt/NiO in the pores of chromium terephthalate MIL-101 as catalysts for achieving phenol hydrogenation to KA (the mixture of cyclohexanone (K) and cyclohexanol (A)) oils with tunable ratios and good reusability under room temperature and normal hydrogen pressure.

Abstract

Hydrogenation of lignin-derived phenol to KA oil (the mixture of cyclohexanone (K) and cyclohexanol (A)) is attractive yet challenging in the sustainable upgrading of biomass derivatives under mild conditions. Traditional supported metal catalysts have been widely studied but the active components on supports often exhibit low recyclability due to their instability under experimental conditions. Here we show fabricating ultrasmall Pt/NiO in the pores of chromium terephthalate MIL-101 as catalysts for hydrogenation of phenol. Impressively, Pt/NiO@MIL-101 achieves catalytic phenol hydrogenation to KA oils of tunable K/A ratios and good reusability under room temperature and atmospheric hydrogen pressure, superior to contrast Pt@MIL-101 and Pt/NiO samples. Such excellent performance mainly originates from the effective adsorption and activation of phenol by coordinatively unsaturated Cr sites and H2 activation on ultrasmall Pt/NiO as well as its effective spillover to the adsorbed phenol over Cr sites for hydrogenation reaction. Substantially, such catalyst also displays the excellent performances for hydrogenation of phenol’s derivatives under mild conditions.

Electronic Supplementary Material

Download File(s)
6756_ESM.pdf (4.5 MB)

References

[1]

Gonfa, M. T.; Shen, S.; Chen, L.; Hu, B.; Zhou, W.; Bai, Z. J.; Au, C. T.; Yin, S. F. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol. Chin. J. Catal. 2023, 49, 16–41.

[2]

Zhou, P.; Guo, S. X.; Li, L. B.; Ueda, T.; Nishiwaki, Y.; Huang, L.; Zhang, Z. H.; Zhang, J. Selective electrochemical hydrogenation of phenol with earth-abundant Ni-MoO2 heterostructured catalysts: Effect of oxygen vacancy on product selectivity. Angew. Chem., Int. Ed. 2023, 62, e202214881.

[3]

Li, X. L.; Jiang, H.; Hou, M. M.; Liu, Y. F.; Xing, W. H.; Chen, R. Z. Enhanced phenol hydrogenation for cyclohexanone production by membrane dispersion. Chem. Eng. J. 2020, 386, 120744.

[4]

Morejón, M. C.; Franz, A.; Karande, R.; Harnisch, F. Integrated electrosynthesis and biosynthesis for the production of adipic acid from lignin-derived phenols. Green Chem. 2023, 25, 4662–4666.

[5]

Xue, G. X.; Yin, L. L.; Shao, S. X.; Li, G. D. Recent progress on selective hydrogenation of phenol toward cyclohexanone or cyclohexanol. Nanotechnology 2022, 33, 072003.

[6]

Yu, Q.; Zhou, J.; Wang, W. Q.; Li, D. C.; Sun, X. Y.; Wang, G. H. Space-confined carbon-doped Pd nanoparticles as a highly efficient catalyst for selective phenol hydrogenation. ACS Catal. 2023, 13, 3925–3933.

[7]

Ding, X. L.; Gao, R. Y.; Chen, Y.; Wang, H. Y.; Liu, Y. D.; Zhou, B. H.; Wang, C. F.; Bai, G. M.; Qiu, W. G. Carbon vacancies in graphitic carbon nitride-driven high catalytic performance of Pd/CN for phenol-selective hydrogenation to cyclohexanone. ACS Catal. 2024, 14, 3308–3319.

[8]

Yan, P. J.; Tian, P. F.; Li, K. J.; Cohen Stuart, M. A.; Wang, J. Y.; Yu, X. H.; Zhou, S. H. Rh nanoclusters encaged in hollow mesoporous silica nanoreactors with enhanced catalytic performance for phenol selective hydrogenation. Chem. Eng. J. 2020, 397, 125484.

[9]

Sun, L. H.; Li, Q. Y.; Xu, Y. S.; Xia, S. Y.; Xu, D.; Lin, X.; Xu, J. S.; Chen, J. S.; Li, G. D.; Li, X. H. Tunable hydrogen coverage on electron-deficient platinum nanoparticles for efficient hydrogenation reactions. Nano Res. 2023, 16, 8751–8756.

[10]

Chen, J.; Ji, J. L.; Tu, T. Selective hydrogenation of phenols to cyclohexanols catalyzed by robust solid NHC-Rh coordination assemblies in water. Green Chem. 2023, 25, 7541–7546.

[11]

Zhan, J. H.; Hu, R.; Luo, X.; Zhang, C.; Luo, G.; Fan, J. J.; Clark, J. H.; Zhang, S. C. Highly selective conversion of phenol to cyclohexanol over Ru/Nb2O5- nC18PA catalysts with increased acidity in a biphasic system under mild conditions. Green Chem. 2022, 24, 1152–1164.

[12]

Wei, H. H.; Shao, S. X.; Deng, B. H.; Xue, Y. F.; Chen, W. X.; Yin, L. L.; Lin, Y. X.; Hussain, N.; Wu, X. D.; Ge, B. H. et al. Generalized rapid synthesis of supported nanocluster catalyst for mild hydrogenation of phenol toward KA oil. Small 2023, 19, 2207759.

[13]

Sarkar, B.; Pendem, C.; Konathala, L. N. S.; Sasaki, T.; Bal, R. Pt nanoparticle supported on nanocrystalline CeO2: Highly selective catalyst for upgradation of phenolic derivatives present in bio-oil. J. Mater. Chem. A 2014, 2, 18398–18404.

[14]

Zheng, F. B.; Lin, T.; Wang, K.; Wang, Y. L.; Li, G. D. Recent advances in bimetallic metal-organic frameworks and their derivatives for thermal catalysis. Nano Res. 2023, 16, 12919–12935.

[15]

Li, F. Y.; Jiang, J. Z.; Wang, J. M.; Zou, J.; Sun, W.; Wang, H. T.; Xiang, K.; Wu, P. X.; Hsu, J. P. Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production. Nano Res. 2023, 16, 127–145.

[16]

Xu, H. Y.; Geng, P. B.; Feng, W. C.; Du, M.; Kang, D. J.; Pang, H. Recent advances in metal-organic frameworks for electrochemical performance of batteries. Nano Res. 2024, 17, 3472–3492.

[17]

Teng, J. N.; Xu, G. Y.; Fu, Y. Aerobic oxidation of 5-hydroxymethylfurfural to dimethyl furan-2,5-dicarboxylate over CoMn@NC catalysts using atmospheric oxygen. Acta Phys. Chim. Sin. 2022, 38, 2204031.

[18]

Li, Y. M.; Liu, H. C. Selective hydrogenolysis of glycerol to 1,3-propanediol over supported platinum-tungsten oxide catalysts. Acta Phys. Chim. Sin. 2022, 38, 2207014.

[19]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[20]

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

[21]

Liu, D.; Wan, J. W.; Pang, G. S.; Tang, Z. Y. Hollow metal-organic-framework micro/nanostructures and their derivatives: Emerging multifunctional materials. Adv. Mater. 2019, 31, 1803291.

[22]

Wang, H. W.; Zheng, F. B.; Xue, G. X.; Wang, Y. L.; Li, G. D.; Tang, Z. Y. Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Sci. China Chem. 2021, 64, 1854–1874.

[23]

Wang, H.; Zhang, X. Y.; Zhang, W.; Zhou, M.; Jiang, H. L. Heteroatom-doped Ag25 nanoclusters encapsulated in metal-organic frameworks for photocatalytic hydrogen production. Angew. Chem., Int. Ed., 2024, 63, e202401443.

[24]

Sun, K.; Huang, Y.; Wang, Q. Y.; Zhao, W. D.; Zheng, X. S.; Jiang, J.; Jiang, H. L. Manipulating the spin state of Co sites in metal-organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 2024, 146, 3241–3249.

[25]

He, C.; Liang, J.; Zou, Y. H.; Yi, J. D.; Huang, Y. B.; Cao, R. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. 2021, 9, nwab157.

[26]

Li, Q. X.; Si, D. H.; Lin, W.; Wang, Y. B.; Zhu, H. J.; Huang, Y. B.; Cao, R. Highly efficient electroreduction of CO2 by defect single-atomic Ni-N3 sites anchored on ordered micro-macroporous carbons. Sci. China Chem. 2022, 65, 1584–1593.

[27]

Zhang, W. N.; Zheng, B.; Shi, W. X.; Chen, X. Y.; Xu, Z. L.; Li, S. Z.; Chi, Y. R.; Yang, Y. H.; Lu, J.; Huang, W. et al. Site-selective catalysis of a multifunctional linear molecule: The steric hindrance of metal-organic framework channels. Adv. Mater. 2018, 30, 1800643.

[28]

Hu, Y.; Xu, X. J.; Zheng, B.; Hou, S. S.; Wang, P.; Chen, W. Z.; Gao, C.; Gu, Z. D.; Shen, Y.; Wu, J. S. et al. Functional macro-microporous metal-organic frameworks for improving the catalytic performance. Small Methods 2019, 3, 1800547.

[29]

Li, G. F.; Han, J. Y.; Wang, H.; Zhu, X. L.; Ge, Q. F. Role of dissociation of phenol in its selective hydrogenation on Pt(111) and Pd(111). ACS Catal. 2015, 5, 2009–2016.

[30]

Zhang, H. W.; Han, A. J.; Okumura, K.; Zhong, L. X.; Li, S. Z.; Jaenicke, S.; Chuah, G. K. Selective hydrogenation of phenol to cyclohexanone by SiO2-supported rhodium nanoparticles under mild conditions. J. Catal. 2018, 364, 354–365.

[31]

Nelson, N. C.; Manzano, J. S.; Sadow, A. D.; Overbury, S. H.; Slowing, I. I. Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure. ACS Catal. 2015, 5, 2051–2061.

[32]

Singh, S.; Majer, M.; Czarnecki, M. A.; Morisawa, Y.; Ozaki, Y. Solvent effect on assembling and interactions in solutions of phenol: Infrared spectroscopic and density functional theory study. Appl. Spectrosc. 2022, 76, 28–37.

[33]

Yu, H.; Zhang, W.; Lv, S. C.; Han, J.; Xie, G.; Chen, S. P. A one-step structure-switching electrochemical sensor for transcription factor detection enhanced with synergistic catalysis of PtNi@MIL-101 and Exo III-assisted cycling amplification. Chem. Commun. 2018, 54, 11901–11904.

Nano Research
Pages 7053-7060
Cite this article:
Zheng F, Wang K, Ren Y, et al. Room-temperature and atmospheric-pressure hydrogenation of lignin-derived phenol to KA oil by Pt/NiO@MOFs. Nano Research, 2024, 17(8): 7053-7060. https://doi.org/10.1007/s12274-024-6756-5
Topics:

374

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 10 April 2024
Revised: 11 May 2024
Accepted: 12 May 2024
Published: 26 June 2024
© Tsinghua University Press 2024
Return