AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mitochondrial components transferred by MSC-derived exosomes promoted bone regeneration under high salt microenvironment via DRP1/Wnt signaling

Yiming Wang1,2,3,§Shuai Lin1,2,3,§Liujing Chen1,2,3,§Mingzhao Li1,2,3Zilu Zhu1,2,3Zimeng Zhuang1,2,3Meilian Cai1,2,3Han Zhang1,2,3Chenyang Xing1,2,3Weiran Li1,2,3( )Ruili Yang1,2,3( )
Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China

§ Yiming Wang, Shuai Lin, and Liujing Chen contributed equally to this work.

Show Author Information

Graphical Abstract

Mesenchymal stem cell (MSC)-derived exosomes transfer mitochondrial components to promote bone regeneration under high salt microenvironment via dynamin-related protein 1 (DRP1)/Wnt signaling.

Abstract

Bone homeostasis relies on the dynamic balance of osteoblast mediated bone construction and osteoclast-based bone resorption processes, which has been reported to be controlled by various mineral ions. However, there is no direct evidence of the effect and the underlying mechanism of high salt stimulation on bone metabolism. In this study, we demonstrated that high salt stimulation promoted excessive mitochondrial fission mediated by dynamin-related protein 1 in mesenchymal stem cells, which resulted in impaired mitochondrial morphology and function. Consequently, this impairment hindered the bone formation of mesenchymal stem cells, resulting in osteopenia in mice. Mechanically, the impaired property of mesenchymal stem cells which was caused by high salt was controlled by dynamin-related protein 1 mediated mitochondrial fission, which inhibited the classical Wnt signaling pathway. Furthermore, the osteogenic property of mesenchymal stem cells decreased by high salt could be restored by exosomes to transfer the mitochondrial DNA into the impaired mesenchymal stem cells. This study provides not only new strategies for promoting bone regeneration but also new insights into the effect and mechanism of exosome-mediated delivery.

Electronic Supplementary Material

Video
6758_ESM2.mp4
Download File(s)
6758_ESM1.pdf (5 MB)

References

[1]

Titze, J.; Luft, F. C. Speculations on salt and the genesis of arterial hypertension. Kidney Int. 2017, 91, 1324–1335.

[2]

Cheng, Y.; Song, H. Y.; Pan, X. Q.; Xue, H.; Wan, Y. F.; Wang, T.; Tian, Z. M.; Hou, E. T.; Lanza, I. R.; Liu, P. Y. et al. Urinary metabolites associated with blood pressure on a low- or high-sodium diet. Theranostics 2018, 8, 1468–1480.

[3]

Malta, D.; Petersen, K. S.; Johnson, C.; Trieu, K.; Rae, S.; Jefferson, K.; Santos, J. A.; Wong, M. M. Y.; Raj, T. S.; Webster, J. et al. High sodium intake increases blood pressure and risk of kidney disease. From the Science of Salt: A regularly updated systematic review of salt and health outcomes (August 2016 to March 2017). J. Clin. Hypertens. 2018, 20, 1654–1665.

[4]

Patel, Y.; Joseph, J. Sodium intake and heart failure. Int. J. Mol. Sci. 2020, 21, 9474.

[5]

Micha, R.; Shulkin, M. L.; Peñalvo, J. L.; Khatibzadeh, S.; Singh, G. M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One 2017, 12, e0175149.

[6]

Na, S. Y.; Janakiraman, M.; Leliavski, A.; Krishnamoorthy, G. High-salt diet suppresses autoimmune demyelination by regulating the blood–brain barrier permeability. Proc. Natl. Acad. Sci. USA 2021, 118, e2025944118.

[7]

Schröder, A.; Neubert, P.; Titze, J.; Bozec, A.; Neuhofer, W.; Proff, P.; Kirschneck, C.; Jantsch, J. Osteoprotective action of low-salt diet requires myeloid cell-derived NFAT5. JCI Insight 2019, 4, e127868.

[8]

Paddenberg, E.; Krenmayr, B.; Jantsch, J.; Kirschneck, C.; Proff, P.; Schröder, A. Dietary salt and myeloid NFAT5 (nuclear factor of activated T cells 5) impact on the number of bone-remodelling cells and frequency of root resorption during orthodontic tooth movement. Ann. Anat. 2022, 244, 151979.

[9]

Shum, L. C.; White, N. S.; Mills, B. N.; de Mesy Bentley, K. L.; Eliseev, R. A. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev. 2016, 25, 114–122.

[10]

Chan, D. C. Fusion and fission: Interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 2012, 46, 265–287.

[11]

Jeong, S.; Seong, J. H.; Kang, J. H.; Lee, D. S.; Yim, M. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss. FEBS Lett. 2021, 595, 58–67.

[12]

Ma, T. Y.; Lin, S. Y.; Wang, B.; Wang, Q. R.; Xia, W. J.; Zhang, H. X.; Cui, Y. T.; He, C. K.; Wu, H.; Sun, F. et al. TRPC3 deficiency attenuates high salt-induced cardiac hypertrophy by alleviating cardiac mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 2019, 519, 674–681.

[13]

Lang, H. M.; Li, Q.; Yu, H.; Li, P.; Lu, Z. S.; Xiong, S. Q.; Yang, T.; Zhao, Y.; Huang, X. H.; Gao, P. et al. Activation of TRPV1 attenuates high salt-induced cardiac hypertrophy through improvement of mitochondrial function. Br. J. Pharmacol. 2015, 172, 5548–5558.

[14]

Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J. J.; Lötvall, J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659.

[15]

Xia, L. J.; Zhang, C. L.; Lv, N. Y.; Liang, Z. H.; Ma, T. H.; Cheng, H. B.; Xia, Y. B.; Shi, L. Y. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages. Theranostics 2022, 12, 2928–2947.

[16]

Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021, 19, 47.

[17]

Narayanan, R.; Huang, C. C.; Ravindran, S. Hijacking the cellular mail: Exosome mediated differentiation of mesenchymal stem cells. Stem Cells Int. 2016, 2016, 3808674.

[18]

Guescini, M.; Genedani, S.; Stocchi, V.; Agnati, L. F. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. 2010, 117, 1–4.

[19]

Dave, K. M.; Stolz, D. B.; Manickam, D. S. Delivery of mitochondria-containing extracellular vesicles to the BBB for ischemic stroke therapy. Expert Opin. Drug Deliv. 2023, 20, 1769–1788.

[20]

Hu, M. Y.; Lin, Y. Y.; Men, X. J.; Wang, S. S.; Sun, X. B.; Zhu, Q.; Lu, D. L.; Liu, S. X.; Zhang, B. J.; Cai, W. et al. High-salt diet downregulates TREM2 expression and blunts efferocytosis of macrophages after acute ischemic stroke. J. Neuroinflammation 2021, 18, 90.

[21]

Schröder, A.; Gubernator, J.; Leikam, A.; Nazet, U.; Cieplik, F.; Jantsch, J.; Neubert, P.; Titze, J.; Proff, P.; Kirschneck, C. Dietary salt accelerates orthodontic tooth movement by increased osteoclast activity. Int. J. Mol. Sci. 2021, 22, 596.

[22]

Kleinewietfeld, M.; Manzel, A.; Titze, J.; Kvakan, H.; Yosef, N.; Linker, R. A.; Muller, D. N.; Hafler, D. A. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013, 496, 518–522.

[23]

Côrte-Real, B. F.; Hamad, I.; Hornero, R. A.; Geisberger, S.; Roels, J.; Van Zeebroeck, L.; Dyczko, A.; van Gisbergen, M. W.; Kurniawan, H.; Wagner, A. et al. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab. 2023, 35, 299–315.e8.

[24]

Mazzitelli, I.; Bleichmar, L.; Melucci, C.; Gerber, P. P.; Toscanini, A.; Cuestas, M. L.; Diaz, F. E.; Geffner, J. High salt induces a delayed activation of human neutrophils. Front. Immunol. 2022, 13, 831844.

[25]

Geisberger, S.; Bartolomaeus, H.; Neubert, P.; Willebrand, R.; Zasada, C.; Bartolomaeus, T.; McParland, V.; Swinnen, D.; Geuzens, A.; Maifeld, A. et al. Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes. Circulation 2021, 144, 144–158.

[26]

Li, Y. H.; Xu, F.; Thome, R.; Guo, M. F.; Sun, M. L.; Song, G. B.; Li, R. L.; Chai, Z.; Ciric, B.; Rostami, A. M. et al. Mdivi-1, a mitochondrial fission inhibitor, modulates T helper cells and suppresses the development of experimental autoimmune encephalomyelitis. J. Neuroinflammation 2019, 16, 149.

[27]

Zhou, Y. K.; Han, C. S.; Zhu, Z. L.; Chen, P.; Wang, Y. M.; Lin, S.; Chen, L. J.; Zhuang, Z. M.; Zhou, Y. H.; Yang, R. L. M2 exosomes modified by hydrogen sulfide promoted bone regeneration by moesin mediated endocytosis. Bioact. Mater. 2024, 31, 192–205.

[28]

Bonekamp, N. A.; Peter, B.; Hillen, H. S.; Felser, A.; Bergbrede, T.; Choidas, A.; Horn, M.; Unger, A.; Di Lucrezia, R.; Atanassov, I. et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 2020, 588, 712–716.

[29]

Li, L. L.; Lai, E. Y.; Luo, Z. M.; Solis, G.; Mendonca, M.; Griendling, K. K.; Wellstein, A.; Welch, W. J.; Wilcox, C. S. High salt enhances reactive oxygen species and angiotensin II contractions of glomerular afferent arterioles from mice with reduced renal mass. Hypertension 2018, 72, 1208–1216.

[30]

Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913.

[31]

Takase, H.; Takeuchi, Y.; Fujita, T.; Ohishi, T. Excessive salt intake reduces bone density in the general female population. Eur. J. Clin. Invest. 2023, 53, e14034.

[32]

Cui, Y.; Sun, K. H.; Xiao, Y. W.; Li, X. Y.; Mo, S.; Yuan, Y. H.; Wang, P. P.; Yang, L.; Zhang, R. H.; Zhu, X. F. High-salt diet accelerates bone loss accompanied by activation of ion channels related to kidney and bone tissue in ovariectomized rats. Ecotoxicol. Environ. Saf. 2022, 244, 114024.

[33]

Mishra, P.; Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell. Biol. 2016, 212, 379–387.

[34]

Chang, M. H.; Song, X. G.; Geng, X. R.; Wang, X. W.; Wang, W. J.; Chen, T. C.; Xie, L.; Song, X. R. Temozolomide–perillyl alcohol conjugate impairs mitophagy flux by inducing lysosomal dysfunction in non-small cell lung cancer cells and sensitizes them to irradiation. J. Exp. Clin. Cancer Res. 2018, 37, 250.

[35]

Gan, X. Q.; Huang, S. B.; Yu, Q.; Yu, H. Y.; Yan, S. S. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction. Biochem. Biophys. Res. Commun. 2015, 468, 719–725.

[36]

Suh, J.; Kim, N. K.; Shim, W.; Lee, S. H.; Kim, H. J.; Moon, E.; Sesaki, H.; Jang, J. H.; Kim, J. E.; Lee, Y. S. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis. Cell Metab. 2023, 35, 345–360.e7.

[37]

Li, L.; Peng, X. Z.; Qin, Y. B.; Wang, R. C.; Tang, J. L.; Cui, X.; Wang, T.; Liu, W. L.; Pan, H. B.; Li, B. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis. Sci. Rep. 2017, 7, 45204.

[38]

Shares, B. H.; Busch, M.; White, N.; Shum, L.; Eliseev, R. A. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation. J. Biol. Chem. 2018, 293, 16019–16027.

[39]

Xiong, X. P.; Hasani, S.; Young, L. E. A.; Rivas, D. R.; Skaggs, A. T.; Martinez, R.; Wang, C.; Weiss, H. L.; Gentry, M. S.; Sun, R. C. et al. Activation of Drp1 promotes fatty acids-induced metabolic reprograming to potentiate Wnt signaling in colon cancer. Cell Death Differ. 2022, 29, 1913–1927.

[40]

Chen, J.; Sun, W. W.; Zhang, H. F.; Ma, J. W.; Xu, P. W.; Yu, Y. D.; Fang, H. Q.; Zhou, L.; Lv, J. D.; Xie, J. et al. Macrophages reprogrammed by lung cancer microparticles promote tumor development via release of IL-1β. Cell. Mol. Immunol. 2020, 17, 1233–1244.

[41]

Ikeda, G.; Santoso, M. R.; Tada, Y.; Li, A. M.; Vaskova, E.; Jung, J. H.; O’Brien, C.; Egan, E.; Ye, J. B.; Yang, P. C. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J. Am. Coll. Cardiol. 2021, 77, 1073–1088.

Nano Research
Pages 8301-8315
Cite this article:
Wang Y, Lin S, Chen L, et al. Mitochondrial components transferred by MSC-derived exosomes promoted bone regeneration under high salt microenvironment via DRP1/Wnt signaling. Nano Research, 2024, 17(9): 8301-8315. https://doi.org/10.1007/s12274-024-6758-3
Topics:

597

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 March 2024
Revised: 09 May 2024
Accepted: 11 May 2024
Published: 18 July 2024
© Tsinghua University Press 2024
Return