AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Triboelectric nanogenerators for self-powered neurostimulation

Shumao XuFarid ManshaiiXiao XiaoJunyi YinJun Chen( )
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
Show Author Information

Graphical Abstract

Abstract

The burgeoning field of soft bioelectronics heralds a new dawn in medical treatment for neurological and psychiatric conditions, presenting innovative methods for the stimulation, inhibition, and precise sensing of neuronal activities. Central to these advancements is the challenge of power supply; devices dependent on traditional batteries face limitations regarding miniaturization and require invasive surgeries for battery replacement. Triboelectric nanogenerators (TENGs), which generate power from biomechanical movements, offer a promising solution for developing self-powered neurostimulation devices without the need for an external power supply. This review delves into recent progress in TENGs, with a focus on their application in self-powered neurostimulation systems. The utility of TENGs across various nervous systems—including the center, autonomic, and somatic nervous systems—is explored and presented, highlighting the potential for these devices to facilitate neurological treatments. By summarizing TENGs’ operational details and the potential for clinical translation, this review also identifies challenges associated with the implantation and integration of neural electrodes and presents recent advances in solutions, aiming to reshape electric treatments for neurological diseases.

References

[1]

Su, Y. J.; Li, W. X.; Yuan, L.; Chen, C. X.; Pan, H.; Xie, G. Z.; Conta, G.; Ferrier, S.; Zhao, X.; Chen, G. R. et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021, 89, 106321.

[2]

Su, Y. J.; Chen, C. X.; Pan, H.; Yang, Y.; Chen, G. R.; Zhao, X.; Li, W. X.; Gong, Q. C.; Xie, G. Z.; Zhou, Y. H. et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 2021, 31, 2010962.

[3]

Dong, B. W.; Yang, Y. Q.; Shi, Q. F.; Xu, S. Y.; Sun, Z. D.; Zhu, S. Y.; Zhang, Z. X.; Kwong, D. L.; Zhou, G. Y.; Ang, K. W. et al. Wearable triboelectric-human–machine interface (THMI) using robust nanophotonic readout. ACS Nano 2020, 14, 8915–8930.

[4]

Xu, J.; Zou, Y. J.; Nashalian, A.; Chen, J. Leverage surface chemistry for high-performance triboelectric nanogenerators. Front. Chem. 2020, 8, 577327.

[5]

Conta, G.; Libanori, A.; Tat, T.; Chen, G. R.; Chen, J. Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 2021, 33, 2007502.

[6]

Xiao, X.; Xiao, X.; Nashalian, A.; Libanori, A.; Fang, Y. S.; Li, X. Y.; Chen, J. Triboelectric nanogenerators for self-powered wound healing. Adv. Healthc. Mater. 2021, 10, 2100975.

[7]

Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

[8]

Che, Z. Y.; Wan, X.; Xu, J.; Duan, C.; Zheng, T. Q.; Chen, J. Speaking without vocal folds using a machine-learning-assisted wearable sensing-actuation system. Nat. Commun. 2024, 15, 1873.

[9]
Yin, J. Y.; Wang, S. L.; Tat, T.; Chen, J. Motion artefact management for soft bioelectronics. Nat. Rev. Bioeng., in press, DOI: 10.1038/s44222-024-00175-4.
[10]

Xiao, X.; Xiao, X.; Zhou, Y. H.; Zhao, X.; Chen, G. R.; Liu, Z. X.; Wang, Z. H.; Lu, C. Y.; Hu, M. L.; Nashalian, A. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 2021, 7, eabl3742.

[11]

Duan, Q. S.; Peng, W. Q.; He, J. X.; Zhang, Z. J.; Wu, Z. C.; Zhang, Y.; Wang, S. F.; Nie, S. X. Rational design of advanced triboelectric materials for energy harvesting and emerging applications. Small Methods 2023, 7, 2201251.

[12]

Shen, J. Y.; Yang, Y. Y.; Yang, Z.; Li, B.; Ji, L. H.; Cheng, J. A multilayer triboelectric-electromagnetic hybrid nanogenerator for vibration energy harvesting and frequency monitoring. Nano Energy 2023, 116, 108818.

[13]

Chen, K.; Li, Y. Y.; Yang, G. G.; Hu, S. M.; Shi, Z. J.; Yang, G. Fabric-based TENG woven with bio-fabricated superhydrophobic bacterial cellulose fiber for energy harvesting and motion detection. Adv. Funct. Mater. 2023, 33, 2304809.

[14]

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

[15]

Zhou, Y. H.; Deng, W. L.; Xu, J.; Chen, J. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 2020, 1, 100142.

[16]

Zhao, X.; Zhou, Y. H.; Song, Y.; Xu, J.; Li, J.; Tat, T.; Chen, G. R.; Li, S.; Chen, J. Permanent fluidic magnets for liquid bioelectronics. Nat. Mater. 2024, 23, 703–710.

[17]

Zhao, X.; Zhou, Y. H.; Xu, J.; Chen, G. R.; Fang, Y. S.; Tat, T.; Xiao, X.; Song, Y.; Li, S.; Chen, J. Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 2021, 12, 6755.

[18]

Libanori, A.; Soto, J.; Xu, J.; Song, Y.; Zarubova, J.; Tat, T.; Xiao, X.; Yue, S. Z.; Jonas, S. J.; Li, S. et al. Self-powered programming of fibroblasts into neurons via a scalable magnetoelastic generator array. Adv. Mater. 2023, 35, 2206933.

[19]

Liu, Z. R.; Cai, M. J.; Zhang, X. D.; Yu, X.; Wang, S.; Wan, X. Y.; Wang, Z. L.; Li, L. L. Cell-traction-triggered on-demand electrical stimulation for neuron-like differentiation. Adv. Mater. 2021, 33, 2106317.

[20]

Beliaeva, V.; Savvateev, I.; Zerbi, V.; Polania, R. Toward integrative approaches to study the causal role of neural oscillations via transcranial electrical stimulation. Nat. Commun. 2021, 12, 2243.

[21]
Xu, S. M.; Liu, Y.; Lee, H.; Li, W. D. Neural interfaces: Bridging the brain to the world beyond healthcare. Exploration, in press, DOI: 10.1002/EXP.20230146.
[22]

Paschen, E.; Elgueta, C.; Heining, K.; Vieira, D. M.; Kleis, P.; Orcinha, C.; Häussler, U.; Bartos, M.; Egert, U.; Janz, P. et al. Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. Elife 2020, 9, e54518.

[23]

Yang, D. Q.; Ren, Q. J.; Nie, J. F.; Zhang, Y.; Wu, H. F.; Chang, Z. Q.; Wang, B. F.; Dai, J.; Fang, Y. Black phosphorus flake-enabled wireless neuromodulation for epilepsy treatment. Nano Lett. 2024, 24, 1052–1061.

[24]

Xiao, B.; Tan, E. K. Thalamic pathways mediating motor and non-motor symptoms in a Parkinson’s disease model. Trends Neurosci. 2023, 46, 1–2.

[25]

Goodwin, G.; McMahon, S. B. The physiological function of different voltage-gated sodium channels in pain. Nat. Rev. Neurosci. 2021, 22, 263–274.

[26]

Tan, L. L.; Oswald, M. J.; Kuner, R. Neurobiology of brain oscillations in acute and chronic pain. Trends Neurosci. 2021, 44, 629–642.

[27]

Zhao, X.; Nashalian, A.; Ock, I. W.; Popoli, S.; Xu, J.; Yin, J. Y.; Tat, T.; Libanori, A.; Chen, G. R.; Zhou, Y. H. et al. A soft magnetoelastic generator for wind-energy harvesting. Adv. Mater. 2022, 34, 2204238.

[28]

Ock, I. W.; Zhao, X.; Tat, T.; Xu, J.; Chen, J. Harvesting hydropower via a magnetoelastic generator for sustainable water splitting. ACS Nano 2022, 16, 16816–16823.

[29]

Ock, I. W.; Zhao, X.; Wan, X.; Zhou, Y. H.; Chen, G. R.; Chen, J. Boost the voltage of a magnetoelastic generator via tuning the magnetic induction layer resistance. Nano Energy 2023, 109, 108298.

[30]

Chen, G. R.; Zhou, Y. H.; Fang, Y. S.; Zhao, X.; Shen, S.; Tat, T.; Nashalian, A.; Chen, J. Wearable ultrahigh current power source based on giant magnetoelastic effect in soft elastomer system. ACS Nano 2021, 15, 20582–20589.

[31]

Wang, X.; Xiao, X.; Feng, Z. P.; Wu, Y. F.; Yang, J.; Chen, J. A soft bioelectronic patch for simultaneous respiratory and cardiovascular monitoring. Adv. Healthc. Mater. 2024, 13, 2303479.

[32]

Ausra, J.; Munger, S. J.; Azami, A.; Burton, A.; Peralta, R.; Miller, J. E.; Gutruf, P. Wireless battery free fully implantable multimodal recording and neuromodulation tools for songbirds. Nat. Commun. 2021, 12, 1968.

[33]

Won, S. M.; Cai, L.; Gutruf, P.; Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 2023, 7, 405–423.

[34]

Stuart, T.; Jeang, W. J.; Slivicki, R. A.; Brown, B. J.; Burton, A.; Brings, V. E.; Alarcón-Segovia, L. C.; Agyare, P.; Ruiz, S.; Tyree, A. et al. Wireless, battery-free implants for electrochemical catecholamine sensing and optogenetic stimulation. ACS Nano 2023, 17, 561–574.

[35]

Chen, G. R.; Zhao, X.; Andalib, S.; Xu, J.; Zhou, Y. H.; Tat, T.; Lin, K.; Chen, J. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 2021, 4, 3725–3740.

[36]

Zhao, X.; Chen, G. R.; Zhou, Y. H.; Nashalian, A.; Xu, J.; Tat, T.; Song, Y.; Libanori, A.; Xu, S. L.; Li, S. et al. Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring. ACS Nano 2022, 16, 6013–6022.

[37]

Xu, J.; Tat, T.; Zhao, X.; Zhou, Y. H.; Ngo, D.; Xiao, X.; Chen, J. A programmable magnetoelastic sensor array for self-powered human–machine interface. Appl. Phys. Rev. 2022, 9, 031404.

[38]

Parandeh, S.; Etemadi, N.; Kharaziha, M.; Chen, G. R.; Nashalian, A.; Xiao, X.; Chen, J. Advances in triboelectric nanogenerators for self-powered regenerative medicine. Adv. Funct. Mater. 2021, 31, 2105169.

[39]

Wang, S. L.; Cui, Q. Y.; Abiri, P.; Roustaei, M.; Zhu, E. B.; Li, Y. R.; Wang, K. D.; Duarte, S.; Yang, L. L.; Ebrahimi, R. et al. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci. Adv. 2023, 9, eadj0540.

[40]

Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

[41]

Zhang, W.; Yang, H. M.; Li, L.; Lin, S. Q.; Ji, P. Y.; Hu, C. G.; Zhang, D. Z.; Xi, Y. Flexible piezoelectric nanogenerators based on a CdS nanowall for self-powered sensors. Nanotechnology 2020, 31, 385401.

[42]

Cao, X. L.; Xiong, Y.; Sun, J.; Zhu, X. X.; Sun, Q. J.; Wang, Z. L. Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv. Funct. Mater. 2021, 31, 2102983.

[43]

Wu, H. S.; Wei, S. M.; Chen, S. W.; Pan, H. C.; Pan, W. P.; Huang, S. M.; Tsai, M. L.; Yang, P. K. Metal-free perovskite piezoelectric nanogenerators for human–machine interfaces and self-powered electrical stimulation applications. Adv. Sci. 2022, 9, 2105974.

[44]

Zhang, Y. Z.; Zhou, L. P.; Liu, C. Z.; Gao, X. Y.; Zhou, Z.; Duan, S. P.; Deng, Q.; Song, L. P.; Jiang, H.; Yu, L. L. et al. Self-powered pacemaker based on all-in-one flexible piezoelectric nanogenerator. Nano Energy 2022, 99, 107420.

[45]

Joshi, B.; Seol, J.; Samuel, E.; Lim, W.; Park, C.; Aldalbahi, A.; El-Newehy, M.; Yoon, S. S. Supersonically sprayed PVDF and ZnO flowers with built-in nanocuboids for wearable piezoelectric nanogenerators. Nano Energy 2023, 112, 108447.

[46]

Zhang, Y. C.; Mao, J. Q.; Zheng, R. K.; Zhang, J. W.; Wu, Y. H.; Wang, X. B.; Miao, K. X.; Yao, H. B.; Yang, L. Y.; Zheng, H. W. Ferroelectric polarization-enhanced performance of flexible CuInP2S6 piezoelectric nanogenerator for biomechanical energy harvesting and voice recognition applications. Adv. Funct. Mater. 2023, 33, 2214745.

[47]

Zhang, X.; Ai, J. W.; Zou, R. P.; Su, B. Compressible and stretchable magnetoelectric sensors based on liquid metals for highly sensitive, self-powered respiratory monitoring. ACS Appl. Mater. Interfaces 2021, 13, 15727–15737.

[48]

Chen, J. C.; Kan, P.; Yu, Z. H.; Alrashdan, F.; Garcia, R.; Singer, A.; Lai, C. S. E.; Avants, B.; Crosby, S.; Li, Z. X. et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 2022, 6, 706–716.

[49]

Saiz, P. G.; Fernández De Luis, R.; Lasheras, A.; Arriortua, M. I.; Lopes, A. C. Magnetoelastic resonance sensors: Principles, applications, and perspectives. ACS Sens. 2022, 7, 1248–1268.

[50]

Wang, R.; Du, Z. L.; Xia, Z. G.; Liu, J. X.; Li, P.; Wu, Z. H.; Yue, Y. M.; Xiang, Y. Z.; Meng, J. C.; Liu, D. X. et al. Magnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricity. Adv. Funct. Mater. 2022, 32, 2107682.

[51]

Song, H.; Jang, Y.; Lee, J. P.; Choe, J. K.; Yun, M.; Baek, Y. K.; Kim, J. Highly compressible 3D-printed soft magnetoelastic sensors for human–machine interfaces. ACS Appl. Mater. Interfaces 2023, 15, 59776–59786.

[52]

Spetzler, E.; Spetzler, B.; McCord, J. A Magnetoelastic Twist on magnetic noise: The connection with intrinsic nonlinearities. Adv. Funct. Mater. 2023, 34, 2309867.

[53]

Xu, J.; Tat, T.; Yin, J. Y.; Ngo, D.; Zhao, X.; Wan, X.; Che, Z. Y.; Chen, K. R.; Harris, L.; Chen, J. A textile magnetoelastic patch for self-powered personalized muscle physiotherapy. Matter 2023, 6, 2235–2247.

[54]

Xu, J.; Tat, T.; Zhao, X.; Xiao, X.; Zhou, Y. H.; Yin, J. Y.; Chen, K. R.; Chen, J. Spherical magnetoelastic generator for multidirectional vibration energy harvesting. ACS Nano 2023, 17, 3865–3872.

[55]

Zhang, T. T.; Ding, Y.; Hu, C. S.; Zhang, M. Y.; Zhu, W. X.; Bowen, C. R.; Han, Y.; Yang, Y. Self-powered stretchable sensor arrays exhibiting magnetoelasticity for real-time human–machine interaction. Adv. Mater. 2023, 35, 2203786.

[56]

Ock, I. W.; Zhou, Y. H.; Zhao, X.; Manshaii, F.; Chen, J. Harvesting ocean wave energy via magnetoelastic generators for self-powered hydrogen production. ACS Energy Lett. 2024, 9, 1701–1709.

[57]

Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.

[58]

Deng, W. L.; Zhou, Y. H.; Zhao, X.; Zhang, S. L.; Zou, Y. J.; Xu, J.; Yeh, M. H.; Guo, H. Y.; Chen, J. Ternary electrification layered architecture for high-performance triboelectric nanogenerators. ACS Nano 2020, 14, 9050–9058.

[59]

Wu, H.; Wang, Z. K.; Zi, Y. L. Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Adv. Energy Mater. 2021, 11, 2100038.

[60]

Lei, R.; Li, S. Y.; Shi, Y. X.; Yang, P.; Tao, X. L.; Zhai, H.; Wang, Z. L.; Chen, X. Y. Largely enhanced output of the non-contact mode triboelectric nanogenerator via a charge excitation based on a high insulation strategy. Adv. Energy Mater. 2022, 12, 2201708.

[61]

Xiao, X.; Chen, G. R.; Libanori, A.; Chen, J. Wearable triboelectric nanogenerators for therapeutics. Trends Chem. 2021, 3, 279–290.

[62]

Zhou, Y. L.; Wang, S. L.; Yin, J. Y.; Wang, J. J.; Manshaii, F.; Xiao, X.; Zhang, T. Q.; Bao, H.; Jiang, S.; Chen, J. Flexible metasurfaces for multifunctional interfaces. ACS Nano 2024, 18, 2685–2707.

[63]

Yang, H. K.; Xiao, X.; Manshaii, F.; Ren, D. H.; Li, X. C.; Yin, J. Y.; Li, Q. Y.; Zhang, X. M.; Xiong, S. Y.; Xi, Y. et al. A dual-symmetry triboelectric acoustic sensor with ultrahigh sensitivity and working bandwidth. Nano Energy 2024, 126, 109638.

[64]

Kwak, W.; Yin, J. Y.; Wang, S. L.; Chen, J. Advances in triboelectric nanogenerators for self-powered wearable respiratory monitoring. FlexMat 2024, 1, 5–22.

[65]

Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; Xie, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262.

[66]

Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J. X.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2021, 15, 2060–2068.

[67]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[68]

Yao, G.; Kang, L.; Li, J.; Long, Y.; Wei, H.; Ferreira, C. A.; Jeffery, J. J.; Lin, Y.; Cai, W. B.; Wang, X. D. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 2018, 9, 5349.

[69]

Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

[70]

Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

[71]

Yang, W. Q.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y. J.; Jing, Q. S.; Cao, X.; Wang, Z. L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317–11324.

[72]

Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.

[73]

Yang, J.; Chen, J.; Yang, Y.; Zhang, H. L.; Yang, W. Q.; Bai, P.; Su, Y. J.; Wang, Z. L. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301322.

[74]

Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z. L.; Wang, Z. L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 2015, 9, 4236–4243.

[75]

Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886.

[76]

Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

[77]

Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361–6366.

[78]

Wen, Z.; Chen, J.; Yeh, M. H.; Guo, H. Y.; Li, Z. L.; Fan, X.; Zhang, T. J.; Zhu, L. P.; Wang, Z. L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 2015, 16, 38–46.

[79]

Jing, Q. S.; Zhu, G.; Bai, P.; Xie, Y. N.; Chen, J.; Han, R. P. S.; Wang, Z. L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 2014, 8, 3836–3842.

[80]

Kuang, S. Y.; Chen, J.; Cheng, X. B.; Zhu, G.; Wang, Z. L. Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics. Nano Energy 2015, 17, 10–16.

[81]

Yang, Y.; Zhang, H. L.; Lin, Z. H.; Zhou, Y. S.; Jing, Q. S.; Su, Y. J.; Yang, J.; Chen, J.; Hu, C. G.; Wang, Z. L. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013, 7, 9213–9222.

[82]

Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

[83]

Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z. N.; Wang, Z. L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316–1326.

[84]

Yang, Y.; Zhu, G.; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H.; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 2013, 7, 9461–9468.

[85]

Su, Y. J.; Zhu, G.; Yang, W. Q.; Yang, J.; Chen, J.; Jing, Q. S.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 2014, 8, 3843–3850.

[86]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

[87]

Guo, H. Y.; Chen, J.; Yeh, M. H.; Fan, X.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 2015, 9, 5577–5584.

[88]

Zeng, Q. X.; Chen, A.; Zhang, X. F.; Luo, Y. L.; Tan, L. M.; Wang, X. A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv. Mater. 2023, 35, 2208139.

[89]

Wang, H. B.; Huang, S. Y.; Kuang, H. Z.; Zhang, C.; Liu, Y. L.; Zhang, K. H.; Cai, X. Y.; Wang, X. Z.; Luo, J. K.; Wang, Z. L. A united triboelectrification mechanism for contacts between all types of materials. Adv. Energy Mater. 2023, 13, 2300529.

[90]

Bhatia, D.; Jo, S. H.; Ryu, Y.; Kim, Y.; Kim, D. H.; Park, H. S. Wearable triboelectric nanogenerator based exercise system for upper limb rehabilitation post neurological injuries. Nano Energy 2021, 80, 105508.

[91]

Wei, X. L.; Wang, Y. H.; Tan, B. T.; Zhang, E. Y.; Wang, B. C.; Su, H.; Yu, L. H.; Yin, Y.; Wang, Z. L.; Wu, Z. Y. Triboelectric nanogenerators stimulated electroacupuncture (EA) treatment for promoting the functional recovery after spinal cord injury. Mater. Today 2022, 60, 41–51.

[92]

Wang, F. T.; Zhang, C. X.; Deng, S. P.; Jiang, Y. F.; Zhang, P. H.; Yang, H. F.; Xiang, L.; Lyu, Y.; Cai, R.; Tan, W. H. Dual-responsive 3D DNA nanomachines cascaded hybridization chain reactions for novel self-powered flexible microRNA-detecting platform. Biosens. Bioelectron. 2024, 252, 116149.

[93]

Li, Y. J.; Xu, J.; Hou, Y. Y.; Lu, J. Q.; Huang, K. J.; Cai, R. 3D hierarchically electrode combined with DNA circuit strategy powered highly sensitive sensing devices. Sens. Actuators B: Chem. 2024, 401, 134963

[94]

Wang, F. T.; Wang, P.; Yang, H. F.; Cai, R.; Tan, W. H. Self-powered biosensing system with multivariate signal amplification for real-time amplified detection of PDGF-BB. Anal. Chem. 2023, 95, 16359–16365.

[95]

Wang, F. T.; Cai, R.; Tan, W. H. Self-powered biosensor for a highly efficient and ultrasensitive dual-biomarker assay. Anal. Chem. 2023, 95, 6046–6052.

[96]

Wang, F. T.; Yang, H. F.; Wu, J. W.; Lyu, Y.; Huang, K. J.; Cai, R.; Tan, W. H. An “On–Off” self-powered biosensor via GOD activated signal transduction for ultrasensitive detection of multiple biomarkers. Chem. Eng. J. 2023, 468, 143732.

[97]

Xu, S. M.; Scott, K.; Manshaii, F.; Chen, J. Heart-brain connection: How can heartbeats shape our minds. Matter 2024, 7, 1684–1687.

[98]

Kang, M.; Shin, H.; Cho, Y.; Park, J.; Nagwade, P.; Lee, S. Triboelectric neurostimulator for physiological modulation of leg muscle. Nano Energy 2022, 103, 107861.

[99]

Li, J. L.; Che, Z. Y.; Wan, X.; Manshaii, F.; Xu, J.; Chen, J. Biomaterials and bioelectronics for self-powered neurostimulation. Biomaterials 2024, 304, 122421.

[100]

Wu, W. X.; Guo, N. Y.; Li, W.; Tang, C. K.; Zhang, Y. X.; Liu, H.; Chen, M. F. The vitro/vivo anti-corrosion effect of antibacterial irTENG on implantable magnesium alloys. Nano Energy 2022, 99, 107397.

[101]

Yao, G.; Kang, L.; Li, C. C.; Chen, S. H.; Wang, Q.; Yang, J. Z.; Long, Y.; Li, J.; Zhao, K. N.; Xu, W. N. et al. A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc. Natl. Acad. Sci. USA 2021, 118, e2100772118.

[102]

Che, Z. Y.; O’Donovan, S.; Xiao, X.; Wan, X.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Yin, J. Y.; Chen, J. Implantable triboelectric nanogenerators for self-powered cardiovascular healthcare. Small 2023, 19, 2207600.

[103]

Li, X. Y.; Tat, T.; Chen, J. Triboelectric nanogenerators for self-powered drug delivery. Trends Chem. 2021, 3, 765–778.

[104]

Liu, Y. J.; Wang, W. D.; Zhang, D. Y.; Sun, Y. J.; Li, F. Z.; Zheng, M.; Lovejoy, D. B.; Zou, Y.; Shi, B. Y. Brain co-delivery of first-line chemotherapy drug and epigenetic bromodomain inhibitor for multidimensional enhanced synergistic glioblastoma therapy. Exploration 2022, 2, 20210274.

[105]

Elsanadidy, E.; Mosa, I. M.; Luo, D.; Xiao, X.; Chen, J.; Wang, Z. L.; Rusling, J. F. Advances in triboelectric nanogenerators for self-powered neuromodulation. Adv. Funct. Mater. 2023, 33, 2211177.

[106]

Lee, S.; Wang, H.; Peh, W. Y. X.; He, T. Y. Y.; Yen, S. C.; Thakor, N. V.; Lee, C. Mechano-neuromodulation of autonomic pelvic nerve for underactive bladder: A triboelectric neurostimulator integrated with flexible neural clip interface. Nano Energy 2019, 60, 449–456.

[107]

Zhang, Q.; Jin, T.; Cai, J. G.; Xu, L.; He, T. Y. Y.; Wang, T. H.; Tian, Y. Z.; Li, L.; Peng, Y.; Lee, C. Wearable triboelectric sensors enabled gait analysis and waist motion capture for IoT-based smart healthcare applications. Adv. Sci. 2022, 9, 2103694.

[108]

Shen, S.; Xiao, X.; Xiao, X.; Chen, J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem. Commun. 2021, 57, 5871–5879.

[109]

Zou, Y. J.; Raveendran, V.; Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020, 77, 105303.

[110]

Gao, Y.; Luo, H. J.; Wang, X.; Chen, J.; Li, J.; Li, Y. L.; Wang, Q. C. A wearable muscle telescopic monitoring sensor with an adjustable double-sponge-modular structure based on triboelectric nanogenerator. Nano Energy 2024, 123, 109412.

[111]

Wang, A. C.; Zhang, B. B.; Xu, C.; Zou, H. Y.; Lin, Z. Q.; Wang, Z. L. Unraveling temperature-dependent contact electrification between sliding-mode triboelectric pairs. Adv. Funct. Mater. 2020, 30, 1909384.

[112]

Yang, T.; Wan, C. W.; Zhang, X. Y.; Liu, T.; Niu, L.; Fang, J.; Liu, Y. Q. High-efficiency preparation of multifunctional conjugated electrospun graphene doped PVDF/CF yarns for energy harvesting and human movement monitoring in TENG textile. Nano Res. 2023, 17, 4478–4488.

[113]

Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. Y. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

[114]

Yang, Y. Q.; Guo, X. G.; Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; He, T. Y. Y.; Lee, C. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth. Adv. Energy Mater. 2023, 13, 2203040.

[115]

Zou, Y. J.; Libanori, A.; Xu, J.; Nashalian, A.; Chen, J. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research 2020, 2020, 7158953.

[116]

Zhou, Y. K.; Shen, M. L.; Cui, X.; Shao, Y. C.; Li, L. J.; Zhang, Y. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887.

[117]

Xiong, Y.; Huo, Z. W.; Zhang, J. T.; Liu, Y.; Yue, D. W.; Xu, N.; Gu, R.; Wei, L.; Luo, L.; Chen, M. X. et al. Triboelectric in-sensor deep learning for self-powered gesture recognition toward multifunctional rescue tasks. Nano Energy 2024, 124, 109465.

[118]

Li, J. R.; Xie, Z. X.; Wang, Z. H.; Lin, Z. N.; Lu, C. Y.; Zhao, Z. H.; Jin, Y. C.; Yin, J. H.; Mu, S. L.; Zhang, C. B. et al. A triboelectric gait sensor system for human activity recognition and user identification. Nano Energy 2023, 112, 108473.

[119]

Pan, M.; Yuan, C. G.; Liang, X. R.; Zou, J.; Zhang, Y.; Bowen, C. Triboelectric and piezoelectric nanogenerators for future soft robots and machines. iScience 2020, 23, 101682.

[120]

Pang, Y. K.; Huang, Z. D.; Fang, Y. H.; Xu, X. C.; Cao, C. Y. Toward self-powered integrated smart packaging system—Desiccant-based triboelectric nanogenerators. Nano Energy 2023, 114, 108659.

[121]

Chen, G. R.; Au, C.; Chen, J. Textile triboelectric nanogenerators for wearable pulse wave monitoring. Trends Biotechnol. 2021, 39, 1078–1092.

[122]

Lama, J.; Yau, A.; Chen, G. R.; Sivakumar, A.; Zhao, X.; Chen, J. Textile triboelectric nanogenerators for self-powered biomonitoring. J. Mater. Chem. A 2021, 9, 19149–19178.

[123]

Chen, J.; Gong, S. K.; Gong, T. W.; Yang, X. H.; Guo, H. Y. Stackable direct current triboelectric-electromagnetic hybrid nanogenerator for self-powered air purification and quality monitoring. Adv. Energy Mater. 2023, 13, 2203689.

[124]

Chen, S. E.; Pang, Y. K.; Yuan, H. Y.; Tan, X. B.; Cao, C. Y. Smart soft actuators and grippers enabled by self-powered tribo-skins. Adv. Mater. Technol. 2020, 5, 1901075.

[125]

Zhan, T. T.; Zou, H. Y.; Zhang, H F.; He, P.; Liu, Z. L.; Chen, J. S.; He, M. G.; Zhang, Y.; Wang, Z. L. Smart liquid-piston based triboelectric nanogenerator sensor for real-time monitoring of fluid status. Nano Energy 2023, 111, 108419.

[126]

Shen, S.; Xiao, X.; Yin, J. Y.; Xiao, X.; Chen, J. Self-powered smart gloves based on triboelectric nanogenerators. Small Methods 2022, 6, 2200830.

[127]

Wei, C. H.; Cheng, R. W.; Ning, C.; Wei, X. Y.; Peng, X.; Lv, T. M.; Sheng, F. F.; Dong, K.; Wang, Z. L. A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv. Funct. Mater. 2023, 33, 2303562.

[128]

Lin, Y. C.; Duan, S. S.; Zhu, D.; Li, Y. H.; Wang, B. H.; Wu, J. Self-powered and interface-independent tactile sensors based on bilayer single-electrode triboelectric nanogenerators for robotic electronic skin. Adv. Intell. Sys. 2023, 5, 2100120.

[129]

Tian, J. W.; Wang, F.; Ding, Y. F.; Lei, R.; Shi, Y. X.; Tao, X. L.; Li, S. Y.; Yang, Y.; Chen, X. Y. Self-powered room-temperature ethanol sensor based on brush-shaped triboelectric nanogenerator. Research 2021, 2021, 8564780.

[130]

Liu, Y. Q.; Yang, W. Y.; Yan, Y. J.; Wu, X. M.; Wang, X. M.; Zhou, Y. L.; Hu, Y. Y.; Chen, H. P.; Guo, T. L. Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing. Nano Energy 2020, 75, 104930.

[131]

Yin, J. Y.; Kashyap, V.; Wang, S. L.; Xiao, X.; Tat, T.; Chen, J. Self-powered eye–computer interaction via a triboelectric nanogenerator. Device 2024, 2, 100252.

[132]

Zhang, S. L.; Zhou, Y. H.; Libanori, A.; Deng, Y. B.; Liu, M. Y.; Zhou, M. J.; Qu, H.; Zhao, X.; Zheng, P.; Zhu, Y. L. et al. Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat. Electron. 2023, 6, 338–348.

[133]

Yang, Y. Q.; Shi, Q. F.; Zhang, Z. X.; Shan, X. C.; Salam, B.; Lee, C. Robust triboelectric information-mat enhanced by multi-modality deep learning for smart home. InfoMat 2023, 5, e12360.

[134]

Akram, W.; Chen, Q.; Xia, G. B.; Fang, J. A review of single electrode triboelectric nanogenerators. Nano Energy 2023, 106, 108043.

[135]

Lone, S. A.; Lim, K. C.; Kaswan, K.; Chatterjee, S.; Fan, K. P.; Choi, D.; Lee, S.; Zhang, H. L.; Cheng, J.; Lin, Z. H. Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy 2022, 99, 107318.

[136]

Zhang, H. D.; Tan, H. Q.; Wang, W. H.; Li, Z. H.; Chen, F. C.; Jiang, X. B.; Lu, X.; Hu, Y. Q.; Li, L. Z.; Zhang, J. et al. Real-time non-driving behavior recognition using deep learning-assisted triboelectric sensors in conditionally automated driving. Adv. Funct. Mater. 2023, 33, 2210580.

[137]

Xu, J.; Yin, J. Y.; Fang, Y. S.; Xiao, X.; Zou, Y. J.; Wang, S. L.; Chen, J. Deep learning assisted ternary electrification layered triboelectric membrane sensor for self-powered home security. Nano Energy 2023, 113, 108524.

[138]

Zhou, Z. H.; Padgett, S.; Cai, Z. X.; Conta, G.; Wu, Y. F.; He, Q.; Zhang, S. L.; Sun, C. C.; Liu, J.; Fan, E. D. et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 2020, 155, 112064.

[139]

Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.

[140]

Babu, A.; Aazem, I.; Walden, R.; Bairagi, S.; Mulvihill, D. M.; Pillai, S. C. Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem. Eng. J. 2023, 452, 139060.

[141]

Zhang, Q.; Zhang, Z. X.; Liang, Q. J.; Shi, Q. F.; Zhu, M. L.; Lee, C. All in one, self-powered bionic artificial nerve based on a triboelectric nanogenerator. Adv. Sci. 2021, 8, 2004727.

[142]

He, T. Y. Y.; Wang, H.; Wang, J. H.; Tian, X.; Wen, F.; Shi, Q. F.; Ho, J. S.; Lee, C. Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications. Adv. Sci. 2019, 6, 1901437.

[143]

Zhou, Z. H.; Weng, L.; Tat, T.; Libanori, A.; Lin, Z. M.; Ge, L. J.; Yang, J.; Chen, J. Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano 2020, 14, 14126–14133.

[144]

Xu, J. H.; Cai, H. W.; Wu, Z. H.; Li, X.; Tian, C. H.; Ao, Z.; Niu, V. C.; Xiao, X.; Jiang, L.; Khodoun, M. et al. Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease. Nat. Commun. 2023, 14, 869.

[145]

Zhou, Y. H.; Zhao, X.; Xu, J.; Chen, G. R.; Tat, T.; Li, J.; Chen, J. A multimodal magnetoelastic artificial skin for underwater haptic sensing. Sci. Adv. 2024, 10, eadj8567.

[146]

Ali, I.; Islam, M. R.; Yin, J. Y.; Eichhorn, S. J.; Chen, J.; Karim, N.; Afroj, S. Advances in smart photovoltaic textiles. ACS Nano 2024, 18, 3871–3915.

[147]

Zhou, M.; Huang, M. K.; Zhong, H.; Xing, C.; An, Y.; Zhu, R. S.; Jia, Z. Y.; Qu, H. D.; Zhu, S. B.; Liu, S. et al. Contact separation triboelectric nanogenerator based neural interfacing for effective sciatic nerve restoration. Adv. Funct. Mater. 2022, 32, 2200269.

[148]

Lee, S.; Wang, H.; Shi, Q. F.; Dhakar, L.; Wang, J. H.; Thakor, N. V.; Yen, S. C.; Lee, C. Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs). Nano Energy 2017, 33, 1–11.

[149]

Wang, J. H.; Wang, H.; He, T. Y. Y.; He, B. R.; Thakor, N. V.; Lee, C. Investigation of low-current direct stimulation for rehabilitation treatment related to muscle function loss using self-powered TENG system. Adv. Sci. 2019, 6, 1900149.

[150]

Wang, J. H.; Wang, H.; Thakor, N. V.; Lee, C. Self-powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple-channel intramuscular electrode. ACS Nano 2019, 13, 3589–3599.

[151]

Sun, Y.; Chao, S. Y.; Ouyang, H.; Zhang, W. Y.; Luo, W. K.; Nie, Q. B.; Wang, J. N.; Luo, C. Y.; Ni, G.; Zhang, L. Y. et al. Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Sci. Bull. 2022, 67, 1284–1294.

[152]

Lee, S.; Wang, H.; Wang, J. H.; Shi, Q. F.; Yen, S. C.; Thakor, N. V.; Lee, C. Battery-free neuromodulator for peripheral nerve direct stimulation. Nano Energy 2018, 50, 148–158.

[153]

Zhang, X. S.; Han, M. D.; Wang, R. X.; Meng, B.; Zhu, F. Y.; Sun, X. M.; Hu, W.; Wang, W.; Li, Z. H.; Zhang, H. X. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 2014, 4, 123–131.

[154]

Zou, Y. J.; Xu, J.; Chen, K.; Chen, J. Advances in nanostructures for high-performance triboelectric nanogenerators. Adv. Mater. Technol. 2021, 6, 2000916.

[155]

Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714.

[156]

Chen, Y. F.; Gao, Z. Q.; Zhang, F. J.; Wen, Z.; Sun, X. H. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022, 2, 20210112.

[157]

Lee, D. M.; Kang, M.; Hyun, I.; Park, B. J.; Kim, H. J.; Nam, S. H.; Yoon, H. J.; Ryu, H.; Park, H. M.; Choi, B. O. et al. An on-demand bioresorbable neurostimulator. Nat. Commun. 2023, 14, 7315.

[158]

Chen, P.; Wang, Q.; Wan, X.; Yang, M.; Liu, C. L.; Xu, C.; Hu, B.; Feng, J. X.; Luo, Z. Q. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy 2021, 89, 106327.

[159]

Lin, Z. W.; Zhang, G. Q.; Xiao, X.; Au, C.; Zhou, Y. H.; Sun, C. C.; Zhou, Z. H.; Yan, R.; Fan, E. D.; Si, S. B. et al. A personalized acoustic interface for wearable human–machine interaction. Adv. Funct. Mater. 2022, 32, 2109430.

[160]

Zhang, P. S.; Li, W. Y.; Liu, C.; Qin, F.; Lu, Y. J.; Qin, M.; Hou, Y. Molecular imaging of tumour-associated pathological biomarkers with smart nanoprobe: From “Seeing” to “Measuring”. Exploration 2023, 3, 20230070.

[161]

Xu, S. M.; Xiao, X.; Manshaii, F.; Chen, J. Injectable fluorescent neural interfaces for cell-specific stimulating and imaging. Nano Lett. 2024, 24, 4703–4716.

[162]

Zhang, S. L.; Deng, Y. B.; Libanori, A.; Zhou, Y. H.; Yang, J. C.; Tat, T.; Yang, L.; Sun, W. X.; Zheng, P.; Zhu, Y. L. et al. In situ grown silver-polymer framework with coordination complexes for functional artificial tissues. Adv. Mater. 2023, 35, 2207916

[163]

Fang, Y. S.; Zou, Y. J.; Xu, J.; Chen, G. R.; Zhou, Y. H.; Deng, W. L.; Zhao, X.; Roustaei, M.; Hsiai, T. K.; Chen, J. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 2021, 33, 2104178.

[164]

Elsanadidy, E.; Mosa, I. M.; Hou, B. W.; Schmid, T.; El-Kady, M. F.; Khan, R. S.; Haeberlin, A.; Tzingounis, A. V.; Rusling, J. F. Self-sustainable intermittent deep brain stimulator. Cell Rep. Phys. Sci. 2022, 3, 101099.

[165]

Fu, Y. M.; Zhang, M. Y.; Dai, Y. T.; Zeng, H.; Sun, C.; Han, Y. C.; Xing, L. L.; Wang, S.; Xue, X. Y.; Zhan, Y. et al. A self-powered brain multi-perception receptor for sensory-substitution application. Nano Energy 2018, 44, 43–52.

[166]

Lee, H. E.; Park, J. H.; Jang, D.; Shin, J. H.; Im, T. H.; Lee, J. H.; Hong, S. K.; Wang, H. S.; Kwak, M. S.; Peddigari, M. et al. Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy 2020, 75, 104951.

[167]

Wang, T.; Song, Z. H.; Zhao, X.; Wu, Y.; Wu, L. Y.; Haghparast, A.; Wu, H. T. Spatial transcriptomic analysis of the mouse brain following chronic social defeat stress. Exploration 2023, 3, 20220133.

[168]

Xu, S. M.; Momin, M.; Ahmed, S.; Hossain, A.; Veeramuthu, L.; Pandiyan, A.; Kuo, C. C.; Zhou, T. Illuminating the brain: Advances and perspectives in optoelectronics for neural activity monitoring and modulation. Adv. Mater. 2023, 35, 2303267.

[169]

Guan, H. Y.; Lv, D.; Zhong, T. Y.; Dai, Y. T.; Xing, L. L.; Xue, X. Y.; Zhang, Y.; Zhan, Y. Self-powered, wireless-control, neural-stimulating electronic skin for in vivo characterization of synaptic plasticity. Nano Energy 2020, 67, 104182.

[170]

Mahmud, M. A. P.; Tat, T.; Xiao, X.; Adhikary, P.; Chen, J. Advances in 4D-printed physiological monitoring sensors. Exploration 2021, 1, 20210033.

[171]

Xu, S. M.; Ahmed, S.; Momin, M.; Hossain, A.; Zhou, T. Unleashing the potential of 3D printing soft materials. Device 2023, 1, 100067.

[172]

Zhang, N. N.; Tao, C. Y.; Fan, X.; Chen, J. Progress in triboelectric nanogenerators as self-powered smart sensors. J. Mater. Res. 2017, 32, 1628–1646.

[173]

Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.

[174]

Zhou, Y. H.; Xiao, X.; Chen, G. R.; Zhao, X.; Chen, J. Self-powered sensing technologies for human Metaverse interfacing. Joule 2022, 6, 1381–1389.

[175]

Fang, Y. S.; Xu, J.; Xiao, X.; Zou, Y. J.; Zhao, X.; Zhou, Y. H.; Chen, J. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring. Adv. Mater. 2022, 34, 2200252.

[176]

Huang, C. X.; Chen, G. R.; Nashalian, A.; Chen, J. Advances in self-powered chemical sensing via a triboelectric nanogenerator. Nanoscale 2021, 13, 2065–2081.

[177]

Emiliani, V.; Entcheva, E.; Hedrich, R.; Hegemann, P.; Konrad, K. R.; Lüscher, C.; Mahn, M.; Pan, Z. H.; Sims, R. R.; Vierock, J. et al. Optogenetics for light control of biological systems. Nat. Rev. Methods Primers 2022, 2, 55.

[178]

Bansal, A.; Shikha, S.; Zhang, Y. Towards translational optogenetics. Nat. Biomed. Eng. 2023, 7, 349–369.

[179]

Jiang, Y.; Dong, K.; Li, X.; An, J.; Wu, D. Q.; Peng, X.; Yi, J.; Ning, C.; Cheng, R. W.; Yu, P. T. et al. Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 2021, 31, 2005584.

[180]

Pandiyan, A.; Veeramuthu, L.; Yan, Z. L.; Lin, Y. C.; Tsai, C. H.; Chang, S. T.; Chiang, W. H.; Xu, S. M.; Zhou, T.; Kuo, C. C. A comprehensive review on perovskite and its functional composites in smart textiles: Progress, challenges, opportunities, and future directions. Prog. Mater. Sci. 2023, 140, 101206.

[181]

Dai, Z. Y.; Lei, M.; Ding, S.; Zhou, Q.; Ji, B.; Wang, M. R.; Zhou, B. P. Durable superhydrophobic surface in wearable sensors: From nature to application. Exploration 2024, 4, 20230046.

[182]

Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

[183]

Tat, T.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Xu, J.; Chen, J. Smart textiles for healthcare and sustainability. ACS Nano 2022, 16, 13301–13313.

[184]

Qi, C. X.; Yang, Z. Y.; Zhi, J. Y.; Zhang, R. C.; Wen, J.; Qin, Y. Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies. Nano Res. 2023, 16, 11783–11800.

[185]

Su, Y. J.; Wang, J. J.; Wang, B.; Yang, T. N.; Yang, B. X.; Xie, G. Z.; Zhou, Y. H.; Zhang, S. L.; Tai, H. L.; Cai, Z. X. et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020, 14, 6067–6075.

[186]

Fang, Y. S.; Chen, G. R.; Bick, M.; Chen, J. Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 2021, 50, 9357–9374.

[187]

Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.

[188]

Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

[189]

Huang, T.; Zhang, J.; Yu, B.; Yu, H.; Long, H. R.; Wang, H. Z.; Zhang, Q. H.; Zhu, M. F. Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power. Nano Energy 2019, 58, 375–383.

[190]

Xu, M.; Liu, Y. H.; Yang, K.; Li, S. Y.; Wang, M. M.; Wang, J. N.; Yang, D.; Shkunov, M.; Silva, S. R. P.; Castro, F. A. et al. Minimally invasive power sources for implantable electronics. Exploration 2024, 4, 20220106.

[191]

Liu, Z.; Li, H.; Shi, B. J.; Fan, Y. B.; Wang, Z. L.; Li, Z. Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1808820.

[192]

Chen, J.; Wang, S. T. The Nano research young innovators awards in bio-inspired nanomaterials. Nano Res. 2024, 17, 417–425.

[193]

Kang, M.; Lee, D. M.; Hyun, I.; Rubab, N.; Kim, S. H.; Kim, S. W. Advances in bioresorbable triboelectric nanogenerators. Chem. Rev. 2023, 123, 11559–11618.

[194]

Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357.

[195]

Xu, W.; Yang, J. Y.; Liu, S. S.; Meng, Y.; Feng, D.; Jia, L. J.; Liu, S. D.; Wang, B. L.; Li, X. H. An instantaneous discharging liquid–solid triboelectric nanogenerator (IDLS-TENG) with boosted peak power output. Nano Energy 2021, 86, 106093.

[196]

Ouyang, H.; Liu, Z.; Li, N.; Shi, B. J.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q. et al. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821.

[197]

Xu, S. M.; Han, Z.; Yuan, K. D.; Qin, P.; Zhao, W.; Lin, T. Q.; Zhou, T.; Huang, F. Q. Upcycling chlorinated waste plastics. Nat. Rev. Methods Primers 2023, 3, 44.

[198]

Yin, J. Y.; Wang, S. L.; Di Carlo, A.; Chang, A.; Wan, X.; Xu, J.; Xiao, X.; Chen, J. Smart textiles for self-powered biomonitoring. Med-X 2023, 1, 3.

[199]

Zhao, T. N.; Xiao, X.; Wu, Y. C.; Ma, J. J.; Li, Y.; Lu, C. Y.; Shokoohi, C.; Xu, Y. Q.; Zhang, X. M.; Zhang, Y. Z. et al. Tracing the flu symptom progression via a smart face mask. Nano Lett. 2023, 23, 8960–8969.

[200]

Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

[201]

Xiang, S. W.; Chen, G. R.; Wen, Q.; Li, H.; Luo, X. X.; Zhong, J. H.; Shen, S.; Di Carlo, A.; Fan, X.; Chen, J. Fully addressable textile sensor array for self-powered haptic interfacing. Matter 2024, 7, 82–94.

[202]

Kashyap, V.; Yin, J. Y.; Xiao, X.; Chen, J. Bioinspired nanomaterials for wearable sensing and human–machine interfacing. Nano Res. 2024, 17, 445–461.

[203]
Xu, S. M.; Manshaii, F.; Chen, G. R.; Chen, J. Reversible metal-ligand coordination for photocontrolled metallopolymer adhesives. Chem, in press, DOI: 10.1016/j.chempr.2024.04.014.
[204]

Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

[205]

Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and internet of things. Joule 2021, 5, 1391–1431.

[206]

Su, Y. J.; Yang, T. N.; Zhao, X.; Cai, Z. X.; Chen, G. R.; Yao, M. L.; Chen, K.; Bick, M.; Wang, J. J.; Li, S. D. et al. A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy 2020, 74, 104941.

[207]

Xu, Q. H.; Fang, Y. S.; Jing, Q. S.; Hu, N.; Lin, K.; Pan, Y. F.; Xu, L.; Gao, H. Q.; Yuan, M.; Chu, L. et al. A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosens. Bioelectron. 2021, 187, 113329.

[208]

Zhao, H. F.; Xu, M. Y.; Shu, M. R.; An, J.; Ding, W. B.; Liu, X. Y.; Wang, S. Y.; Zhao, C.; Yu, H. Y.; Wang, H. et al. Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat. Commun. 2022, 13, 3325.

Nano Research
Cite this article:
Xu S, Manshaii F, Xiao X, et al. Triboelectric nanogenerators for self-powered neurostimulation. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6759-2
Topics:
Part of a topical collection:

917

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 08 April 2024
Revised: 12 May 2024
Accepted: 13 May 2024
Published: 20 June 2024
© Tsinghua University Press 2024
Return