AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Designing macrophage membrane-engineered ruthenium/selenium nanoparticles to block bone metastasis of breast cancer

Meijin YangZhiying TangXiaoying LiYanzi YuLizhen He( )Tianfeng Chen( )
College of Chemistry and Materials Science, Department of Oncology of The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
Show Author Information

Graphical Abstract

Biomimetic design of macrophage membrane-engineered ruthenium/selenium nanoparticles induce cell apoptosis and cycle arrest and inhibit tumor bone metastasis.

Abstract

Bone metastasis along with osteolysis is a common complication of advanced breast cancer, which directly destroys bone function and becomes one of the major causes of cancer-related mortality. It is crucial to develop a new strategy to achieve effective cancer therapy and inhibition of osteolytic bone metastasis. Metal ruthenium (Ru) complexes exhibit therapeutic potential in cancer chemotherapy. However, the clinical applications of Ru complexes were limited by poor bioavailability, lacking targeting, nonspecific distribution. Therefore, in this study, engineering of cell membrane biomimetic modification was used to construct a highly biocompatible nanoplatform with carrying Ru metal complex of RuPOP and Se nanoparticles (SeNPs). Strikingly, the obtained RPSR nanoparticles can efficiently inhibit the proliferation, invasion and migration of breast cancer cells (MDA-MB-231 cells) in vitro. More importantly, RPSR nanoparticles can induce cycle arrest, apoptosis by generating excessive intracellular (reactive oxygen species, ROS) to disrupt the normal redox balance and induce DNA damage in tumor cells. Furthermore, RPSR nanoparticles can also reshape bone microenvironment by regulating selenoproteins to inhibit osteoclasts and avoid osteolytic bone metastasis induced by tumor development. Taken together, this study not only provides an effective cell membrane biomimetic strategy to enhance the shortcomings of metal complexes, but also demonstrates potential clinical significance for the combined treatment of anti-cancer and bone metastasis inhibition.

Electronic Supplementary Material

Download File(s)
6760_ESM.pdf (969 KB)

References

[1]

Su, S. H.; Chen, Y. T.; Zhang, P. F.; Ma, R. J.; Zhang, W.; Liu, J. N.; Li, T.; Niu, H. J.; Cao, Y.; Hu, B. et al. The role of platinum (IV)-based antitumor drugs and the anticancer immune response in medicinal inorganic chemistry. A systematic review from 2017 to 2022. Eur. J. Med. Chem. 2022, 243, 114680

[2]

Goldman, J. W.; Dvorkin, M.; Chen, Y. B.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M. J.; Özgüroğlu, M.; Ji, J. H. et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): Updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 51–65.

[3]

Gu, T. X.; Chen, T.; Cheng, L.; Li, X.; Han, G. R.; Liu, Z. Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. Nano Res. 2020, 13, 2209–2215.

[4]

He, G. L.; He, M. M.; Wang, R.; Li, X. Z.; Hu, H. Z.; Wang, D. S.; Wang, Z. Q.; Lu, Y.; Xu, N.; Du, J. J. et al. A near‐infrared light‐activated photocage based on a ruthenium complex for cancer phototherapy. Angew. Chem., Int. Ed. 2023, 62, e202218768.

[5]

Huang, C.; Liang, C.; Sadhukhan, T.; Banerjee, S.; Fan, Z. X.; Li, T. X.; Zhu, Z. L.; Zhang, P. Y.; Raghavachari, K.; Huang, H. Y. In-vitro and in-vitro photocatalytic cancer therapy with biocompatible iridium (III) photocatalysts. Angew. Chem. 2021, 133, 9560–9565.

[6]

Liu, C.; Wei, Z. N.; Cao, M. N.; Cao, R. Pt nanodendrites with a ptir alloy surface structure exhibit excellent stability toward acidic hydrogen evolution reaction. Nano Res. 2024, 17, 4844–4849.

[7]

Wang, J.; Nie, J. J.; Guo, P. X.; Yan, Z. H.; Yu, B. R.; Bu, W. F. Rhodium (I) complex-based polymeric nanomicelles in water exhibiting coexistent near-infrared phosphorescence imaging and anticancer activity in vivo. J. Am. Chem. Soc. 2020, 142, 2709–2714.

[8]

Mani, A.; Feng, T.; Gandioso, A.; Vinck, R.; Notaro, A.; Gourdon, L.; Burckel, P.; Saubaméa, B.; Blacque, O.; Cariou, K. et al. Structurally simple osmium (II) polypyridyl complexes as photosensitizers for photodynamic therapy in the near infrared. Angew. Chem. 2023, 135, e202218347.

[9]

Zhao, Z. N.; Tao, X.; Xie, Y. X.; Lai, Q.; Lin, W. K.; Lu, K.; Wang, J. H.; Xia, W.; Mao, Z. W. In situ prodrug activation by an affibody-ruthenium catalyst hybrid for HER2-targeted chemotherapy. Angew. Chem., Int. Ed. 2022, 61, e202202855.

[10]

Lee, S. Y.; Kim, C. Y.; Nam, T. G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Dev. Ther. 2020, 14, 5375–5392.

[11]

Li, F. F.; Collins, J. G.; Keene, F. R. Ruthenium complexes as antimicrobial agents. Chem. Soc. Rev. 2015, 44, 2529–2542.

[12]

Zhao, Z. N.; Tao, X.; Xie, Y. X.; Lai, Q.; Lin, W. K.; Lu, K.; Wang, J. H.; Xia, W.; Mao, Z. W. In situ prodrug activation by an affibody-ruthenium catalyst hybrid for HER2-targeted chemotherapy. Angew. Chem. 2022, 134, e202202855

[13]

Venkataraman, S.; Hedrick, J. L.; Ong, Z. Y.; Yang, C.; Ee, P. L. R.; Hammond, P. T.; Yang, Y. Y. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 1228–1246.

[14]

Wang, T. R.; Luo, Y. C. Fabrication strategies and supramolecular interactions of polymer-lipid complex nanoparticles as oral delivery systems. Nano Res. 2021, 14, 4487–4501.

[15]

Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021, 601, 120571.

[16]

Huang, H.; Yang, X. R.; Li, H. L.; Lu, H. S.; Oswald, J.; Liu, Y. M.; Zeng, J.; Jin, C. H.; Peng, X. C.; Liu, J. Y. et al. iRGD decorated liposomes: A novel actively penetrating topical ocular drug delivery strategy. Nano Res. 2020, 13, 3105–3109

[17]

Hao, H. S.; Chen, Y.; Wu, M. Y. Biomimetic nanomedicine toward personalized disease theranostics. Nano Res. 2021, 14, 2491–2511.

[18]

He, Z. H.; Zhang, Y. T.; Feng, N. P. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. Mater. Sci. Eng. C 2020, 106, 110298.

[19]

Song, Z. B.; Zhao, L. Q.; Fang, W. Y.; Guo, S. Y.; Xu, A. Q.; Zhan, Z. M.; Cai, Y. H.; Xue, S. S.; Chai, P.; Jiang, Q. H. et al. Glioma cell membrane camouflaged cinobufotalin delivery system for combinatorial orthotopic glioblastoma therapy. Nano Res. 2023, 16, 11164–11175.

[20]

Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.

[21]

Chen, Y. L.; Cheng, K. Advances of biological-camouflaged nanoparticles delivery system. Nano Res. 2020, 13, 2617–2624.

[22]

Liu, Y.; Luo, J. S.; Chen, X. J.; Liu, W.; Chen, T. K. Cell membrane coating technology: A promising strategy for biomedical applications. Nano-Micro Lett. 2019, 11, 100.

[23]

Fang, R. H.; Gao, W. W.; Zhang, L. F. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 2023, 20, 33–48.

[24]

Qi, C. X.; Liu, X. S.; Zhi, D. K.; Tai, Y. F.; Liu, Y. F.; Sun, Q. Q.; Wang, K.; Wang, S. F.; Midgley, A. C.; Kong, D. L. Exosome-mimicking nanovesicles derived from efficacy-potentiated stem cell membrane and secretome for regeneration of injured tissue. Nano Res. 2022, 15, 1680–1690.

[25]

Wang, Y. L.; Zhang, P.; Wei, Y.; Shen, K. L.; Xiao, L. Y.; Miron, R. J.; Zhang, Y. F. Cell-membrane-display nanotechnology. Adv. Healthc. Mater. 2021, 10, 2001014.

[26]

Yang, Y. X.; Wang, K.; Pan, Y. W.; Rao, L.; Luo, G. X. Engineered cell membrane-derived nanoparticles in immune modulation. Adv. Sci. 2021, 8, 2102330.

[27]

Khosravi, N.; Pishavar, E.; Baradaran, B.; Oroojalian, F.; Mokhtarzadeh, A. Stem cell membrane, stem cell-derived exosomes and hybrid stem cell camouflaged nanoparticles: A promising biomimetic nanoplatforms for cancer theranostics. J. Control. Release 2022, 348, 706–722.

[28]

Oroojalian, F.; Beygi, M.; Baradaran, B.; Mokhtarzadeh, A.; Shahbazi, M. A. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small 2021, 17, 2006484.

[29]

Wu, Y. S.; Wan, S. L.; Yang, S.; Hu, H. Y.; Zhang, C. X.; Lai, J.; Zhou, J. H.; Chen, W.; Tang, X. Q.; Luo, J. S. et al. Macrophage cell membrane-based nanoparticles: A new promising biomimetic platform for targeted delivery and treatment. J. Nanobiotechnol. 2022, 20, 542.

[30]

Wang, H. J.; Liu, Y.; He, R. Q.; Xu, D. L.; Zang, J.; Weeranoppanant, N.; Dong, H. Q.; Li, Y. Y. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater. Sci. 2020, 8, 552–568.

[31]

Clézardin, P.; Coleman, R.; Puppo, M.; Ottewell, P.; Bonnelye, E.; Paycha, F.; Confavreux, C. B.; Holen, I. Bone metastasis: Mechanisms, therapies, and biomarkers. Physiol. Rev. 2021, 101, 797–855.

[32]

Yuan, X. X.; Qian, N. S.; Ling, S. K.; Li, Y. H.; Sun, W. J.; Li, J. W.; Du, R. K.; Zhong, G. H.; Liu, C. Z.; Yu, G. T. et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 2021, 11, 1429–1445.

[33]

Li, H. L.; Lin, X. G.; Yang, D.; Chen, Z. Y.; Wang, X. T.; Re, F.; Wei, J. J.; Chen, J. P. Cancer-associated fibroblasts support bone tropic metastasis by acting as coordinators between the tumor microenvironment and bone matrix in breast cancer. Neoplasma 2021, 68, 10–22.

[34]

Hou, Y. H.; Wang, W. G.; Bartolo, P. A concise review on the role of selenium for bone cancer applications. Bone 2021, 149, 115974.

[35]

Kim, H.; Lee, K.; Kim, J. M.; Kim, M. Y.; Kim, J. R.; Lee, H. W.; Chung, Y. W.; Shin, H. I.; Kim, T.; Park, E. S. et al. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat. Commun. 2021, 12, 2258.

[36]

Huang, H. J.; Zou, B. H.; Zhu, S. L.; Zhang, X. C.; Huang, J. L.; Wang, J. L.; Li, X. L.; Chen, T. F. PD-L1-driven efficient enrichment and elimination of circulating cancer cells by magnetic MoSe2 nanosheet. Nano Res. 2024, 17, 4350–4358.

[37]

Zhu, L. W.; Chan, L.; Wang, J. L.; Zhang, X. C.; Huang, J. L.; Wang, J. L.; Li, X. L.; Chen, T. F. Selenium-engineered bottom-up-synthesized lanthanide coordination nanoframeworks as efficiency X-ray-responsive radiosensitizers. Nano Res. 2023, 16, 5169–5175.

[38]

Zhang, J.; Han, Y. F.; Song, M.; Wang, Q.; Cao, Z.; Yang, X.; Li, Y. F. Selenium improves bone microenvironment-related hematopoiesis and immunity in T-2 toxin-exposed mice. J. Agric. Food Chem. 2023, 71, 2590–2599.

[39]

Zou, B. H.; Xiong, Z. S.; He, L. Z.; Chen, T. F. Reversing breast cancer bone metastasis by metal organic framework-capped nanotherapeutics via suppressing osteoclastogenesis. Biomaterials 2022, 285, 121549.

[40]

Xu, R. H.; You, Y. Y.; Zheng, W. Y.; Ma, L.; Chang, Y. Z.; Pan, S. Y.; He, Y. N.; Zhou, M. J.; Xu, Z. L.; Chen, T. F. et al. Selenoprotein-regulated hydrogel for ultrasound-controlled microenvironment remodeling to promote bone defect repair. Adv. Funct. Mater. 2024, 34, 2313122.

[41]
Zou, B. H.; Xiong, Z. S.; Yu, Y. Z.; Shi, S. J.; Li, X. L.; Chen, T. F. Rapid selenoprotein activation by selenium nanoparticles to suppresses osteoclastogenesis and pathological bone loss. Adv. Mater., in press, DOI: 10.1002/adma.202401620.
[42]

Xiong, Z. S.; Lin, H.; Li, H.; Zou, B. H.; Xie, B.; Yu, Y. Z.; He, L. Z.; Chen, T. F. Chiral selenium nanotherapeutics regulates selenoproteins to attenuate glucocorticoid-induced osteoporosis. Adv. Funct. Mater. 2023, 33, 2212970.

[43]

Ren, X. X.; Liu, H.; Wu, X. M.; Weng, W. Z.; Wang, X. H.; Su, J. C. Reactive oxygen species (ROS)-responsive biomaterials for the treatment of bone-related diseases. Front. Bioeng. Biotechnol. 2022, 9, 820468.

[44]

Li, J. M.; Deng, C. J.; Liang, W. Y.; Kang, F.; Bai, Y.; Ma, B.; Wu, C. T.; Dong, S. W. Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS. Bioact. Mater. 2021, 6, 3839–3850.

[45]

Tao, H. Q.; Ge, G. R.; Liang, X. L.; Zhang, W. C.; Sun, H. Y.; Li, M.; Geng, D. C. ROS signaling cascades: Dual regulations for osteoclast and osteoblast. Acta Biochim. Biophys. Sin. 2020, 52, 1055–1062.

[46]

Sun, H.; Xu, J.; Wang, Y. Y. F.; Shen, S. Y.; Xu, X. Q.; Zhang, L.; Jiang, Q. Bone microenvironment regulative hydrogels with ros scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact. Mater. 2023, 24, 477–496.

[47]

Li, Z. M.; Zhao, T. F.; Ding, J.; Gu, H. C.; Wang, Q. X.; Wang, Y. F.; Zhang, D. T.; Gao, C. Y. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact. Mater. 2023, 19, 550–568.

[48]

Gao, X.; Feng, J.; Lv, K. H.; Zhou, Y. F.; Zhang, R. H.; Song, S. Y.; Zhang, H. J.; Wang, D. G. Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ros generation-primed apoptosis-ferroptosis for cancer dynamic therapy. Nano Res. 2023, 16, 5322–5334.

[49]

Zhang, F.; Li, X. L.; Wei, Y. M. Selenium and selenoproteins in health. Biomolecules 2023, 13, 799.

[50]

Yang, T.; Lee, S. Y.; Park, K. C.; Park, S. H.; Chung, J.; Lee, S. The effects of selenium on bone health: From element to therapeutics. Molecules 2022, 27, 392.

[51]

Zeng, H. W.; Cao, J. J.; Combs, G. F. Jr. Selenium in bone health: Roles in antioxidant protection and cell proliferation. Nutrients 2013, 5, 97–110.

[52]

Boyce, B. F.; Xing, L. P. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146.

[53]

Gilbert, A. K.; Newton, T. D.; Hettiaratchi, M. H.; Pluth, M. D. Reactive sulfur and selenium species in the regulation of bone homeostasis. Free Radical Biol. Med. 2022, 190, 148–157.

[54]

Calandria, J. M.; Bhattacharjee, S.; Kala-Bhattacharjee, S.; Mukherjee, P. K.; Feng, Y. H.; Vowinckel, J.; Treiber, T.; Bazan, N. G. Elovanoid-N34 modulates TXNRD1 key in protection against oxidative stress-related diseases. Cell Death Dis. 2023, 14, 819.

[55]

Liu, X. B.; Hong, E. H.; Xie, J. Y.; Li, J. W.; Ding, B. Y.; Chen, Y. S.; Xia, Z. N.; Jiang, W. P.; Lv, H. Z.; Yang, B. et al. Txnrd2 attenuates early brain injury by inhibition of oxidative stress and endoplasmic reticulum stress via Trx2/Prx3 pathway after intracerebral hemorrhage in rats. Neuroscience 2024, 545, 158–170.

Nano Research
Pages 7504-7512
Cite this article:
Yang M, Tang Z, Li X, et al. Designing macrophage membrane-engineered ruthenium/selenium nanoparticles to block bone metastasis of breast cancer. Nano Research, 2024, 17(8): 7504-7512. https://doi.org/10.1007/s12274-024-6760-9
Topics:

320

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 14 April 2024
Revised: 12 May 2024
Accepted: 13 May 2024
Published: 14 June 2024
© Tsinghua University Press 2024
Return