AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Towards wafer-scale growth of two-dimensional cerium dioxide single crystal with high dielectric performance

Zhuofeng Shi1,2,3,§Muhammad Imran2,3,§Xiaohui Chen2,3,§Xin Liu1,§Yaqi Zhu1,2,3Zhaoning Hu2Saiyu Bu2Jialin Zhang2,4Chunhu Li4Xiaodong Zhang1Li Lin2,3( )
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266000, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

§ Zhuofeng Shi, Muhammad Imran, Xiaohui Chen, and Xin Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Enabled by the lattice symmetry between the substrate and oxide, wafer-sized growth of single-crystalline CeO2 oxide on R-plane sapphires was achieved with high dielectric strength (Ebd ≈ 8.8 MV·cm–1), suppressed leakage current, as well as high dielectric constants (εr ≈ 24).

Abstract

Owing to the atomically thin nature, two-dimensional (2D) oxide materials have been widely reported to exhibit exciting transport and dielectric properties, such as fine gate controllability and ultrahigh carrier mobility, that outperform their bulk counterpart. However, unlike the successful synthesis of bulk oxide single crystals, reliable methods for synthesizing large-area single crystal of 2D oxide, that would suppress the negative influence from defective grain boundaries, remain unavailable, especially for nonlayered oxide. Herein, we report that the lattice symmetry between the substrate and cerium dioxide (CeO2) would allow for the aligned nucleation and epitaxial growth of CeO2 on sapphire substrates, enabling the wafer-sized growth of CeO2 single crystal. The careful tuning of the growth temperature and oxygen flow rate contributed to the harvesting of CeO2 wafer with reduced thickness and enhanced growth rates. The removal of grain boundaries improved the dielectric performance in terms of high dielectric strength (Ebd ≈ 8.8 MV·cm–1), suppressed leakage current, along with high dielectric constants (εr ≈ 24). Our work demonstrates that with fine dielectric performance and ease of synthesizing wafer-sized single crystals, CeO2 can function as potential candidate as gate insulator for 2D-materials based nanoelectronics, and we believe the reported protocol of aligned nucleation can be extended to other 2D oxides.

Electronic Supplementary Material

Download File(s)
6761_ESM.pdf (1.7 MB)

References

[1]

Feng, X. Q.; Cheng, R. Q.; Yin, L.; Wen, Y.; Jiang, J.; He, J. Two-dimensional oxide crystals for device applications: Challenges and opportunities. Adv. Mater. 2024, 36, 2304708.

[2]

Yu, X. G.; Marks, T. J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396.

[3]

Duong, D. L.; Yun, S. J.; Lee, Y. H. van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803–11830.

[4]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

[5]

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

[6]

Li, S. H.; Ouyang, D. C.; Zhang, N.; Zhang, Y.; Murthy, A.; Li, Y.; Liu, S. Y.; Zhai, T. Y. Substrate engineering for chemical vapor deposition growth of large-scale 2D transition metal dichalcogenides. Adv. Mater. 2023, 35, 2211855.

[7]

Xiao, Y.; Xiong, C. Y.; Chen, M. M.; Wang, S. F.; Fu, L.; Zhang, X. H. Structure modulation of two-dimensional transition metal chalcogenides: Recent advances in methodology, mechanism and applications. Chem. Soc. Rev. 2023, 52, 1215–1272.

[8]

Geng, D. C.; Zhao, X. X.; Chen, Z. X.; Sun, W. W.; Fu, W.; Chen, J. Y.; Liu, W.; Zhou, W.; Loh, K. P. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 2017, 29, 1700072.

[9]

Gogotsi, Y.; Huang, Q. MXenes: Two-dimensional building blocks for future materials and devices. ACS Nano 2021, 15, 5775–5780.

[10]

Chen, C.; Yin, Y. L.; Zhang, R. C.; Yuan, Q. H.; Xu, Y.; Zhang, Y. S.; Chen, J.; Zhang, Y.; Li, C.; Wang, J. Y. et al. Growth of single-crystal black phosphorus and its alloy films through sustained feedstock release. Nat. Mater. 2023, 22, 717–724.

[11]

Li, L. K.; Yang, F. Y.; Ye, G. J.; Zhang, Z. C.; Zhu, Z. W.; Lou, W. K.; Zhou, X. Y.; Li, L.; Watanabe, K.; Taniguchi, T. et al. Quantum hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597.

[12]

Zhou, K.; Shang, G.; Hsu, H. H.; Han, S. T.; Roy, V. A. L.; Zhou, Y. Emerging 2D metal oxides: From synthesis to device integration. Adv. Mater. 2023, 35, 2207774.

[13]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[14]

Wei, Q. L.; Li, R. P.; Lin, C. Q.; Han, A. L.; Nie, A. M.; Li, Y. R.; Li, L. J.; Cheng, Y. C.; Huang, W. Quasi-two-dimensional Se-terminated bismuth oxychalcogenide (Bi2O2Se). ACS Nano 2019, 13, 13439–13444.

[15]

Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

[16]

Liu, K. L.; Jin, B.; Han, W.; Chen, X.; Gong, P. L.; Huang, L.; Zhao, Y. H.; Li, L.; Yang, S. J.; Hu, X. Z. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 2021, 4, 906–913.

[17]

Huang, J. K.; Wan, Y.; Shi, J. J.; Zhang, J.; Wang, Z. H.; Wang, W. X.; Yang, N.; Liu, Y.; Lin, C. H.; Guan, X. W. et al. High- κ perovskite membranes as insulators for two-dimensional transistors. Nature 2022, 605, 262–267.

[18]

Yang, A. J.; Han, K.; Huang, K.; Ye, C.; Wen, W.; Zhu, R. X.; Zhu, R.; Xu, J.; Yu, T.; Gao, P. et al. Van der Waals integration of high- κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 2022, 5, 233–240.

[19]

Gebert, M.; Bhattacharyya, S.; Bounds, C. C.; Syed, N.; Daeneke, T.; Fuhrer, M. S. Passivating graphene and suppressing interfacial phonon scattering with mechanically transferred large-area Ga2O3. Nano Lett. 2023, 23, 363–370.

[20]

Han, W.; Huang, P.; Li, L.; Wang, F. K.; Luo, P.; Liu, K. L.; Zhou, X.; Li, H. Q.; Zhang, X. W.; Cui, Y. et al. Two-dimensional inorganic molecular crystals. Nat. Commun. 2019, 10, 4728.

[21]

Holler, B. A.; Crowley, K.; Berger, M. H.; Gao, X. P. A. 2D semiconductor transistors with van der Waals oxide MoO3 as integrated high-κ gate dielectric. Adv. Electron. Mater. 2020, 6, 2000635.

[22]

Rui, X. H.; Lu, Z. Y.; Yu, H.; Yang, D.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Ultrathin V2O5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556–560.

[23]

Jiang, K.; Ji, J. P.; Gong, W. B.; Ding, L.; Li, J. B.; Li, P. F.; Li, B. W.; Geng, F. X. Mechanical cleavage of non-van der Waals structures towards two-dimensional crystals. Nat. Synth. 2023, 2, 58–66.

[24]

Zavabeti, A.; Ou, J. Z.; Carey, B. J.; Syed, N.; Orrell-Trigg, R.; Mayes, E. L. H.; Xu, C. L.; Kavehei, O.; O’Mullane, A. P.; Kaner, R. B. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 2017, 358, 332–335.

[25]

Zavabeti, A.; Aukarasereenont, P.; Tuohey, H.; Syed, N.; Jannat, A.; Elbourne, A.; Messalea, K. A.; Zhang, B. Y.; Murdoch, B. J.; Partridge, J. G. et al. High-mobility p-type semiconducting two-dimensional β-TeO2. Nat. Electron. 2021, 4, 277–283.

[26]

Guo, S. Y.; Zhu, Z.; Hu, X. M.; Zhou, W. H.; Song, X. F.; Zhang, S. L.; Zhang, K.; Zeng, H. B. Ultrathin tellurium dioxide: Emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale 2018, 10, 8397–8403.

[27]

Wu, Y. P.; Wu, S. E.; Hei, J. J.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Chen, Q. M.; Li, X. J.; Yu, X. C.; Wu, D. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging. Nano Res. 2023, 16, 11422–11429.

[28]

Wu, D.; Guo, C. G.; Zeng, L. H.; Ren, X. Y.; Shi, Z. F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C. X. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light: Sci. Appl. 2023, 12, 5.

[29]

Wu, D.; Tian, R.; Lin, P.; Shi, Z. F.; Chen, X.; Jia, M. C.; Tian, Y. T.; Li, X. J.; Zeng, L. H.; Jie, J. S. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging. Nano Energy 2022, 104, 107972.

[30]

Zeng, L. H.; Han, W.; Ren, X. Y.; Li, X.; Wu, D.; Liu, S. J.; Wang, H.; Lau, S. P.; Tsang, Y. H.; Shan, C. X. et al. Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 dirac semimetal. Nano Lett. 2023, 23, 8241–8248.

[31]

Tong, X.; Liu, K. L.; Zeng, M. Q.; Fu, L. Vapor-phase growth of high-quality wafer-scale two-dimensional materials. InfoMat 2019, 1, 460–478.

[32]

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[33]

Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

[34]

Zhao, Z. J.; Fang, Z.; Han, X. C.; Yang, S. Q.; Zhou, C.; Zeng, Y.; Zhang, B.; Li, W.; Wang, Z.; Zhang, Y. et al. A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials. Nat. Commun. 2023, 14, 958.

[35]

Maleeswaran, P.; Nagulapally, D.; Joshi, R. P.; Pradhan, A. K. Leakage current in high dielectric oxides: Role of defect-induced energies. J. Appl. Phys. 2013, 113, 184504.

[36]

Huang, Y. C.; Wu, S. H.; Hsiao, C. H.; Lee, A. T.; Huang, M. H. Mild synthesis of size-tunable CeO2 octahedra for band gap variation. Chem. Mater. 2020, 32, 2631–2638.

[37]

Lisek, I.; Kapała, J.; Miller, M. Thermodynamic study of the CsCl-CeCl3 system by Knudsen effusion mass spectrometry. J. Alloys Compd. 1998, 280, 77–84.

[38]

Bortamuly, R.; Konwar, G.; Boruah, P. K.; Das, M. R.; Mahanta, D.; Saikia, P. CeO2-PANI-HCl and CeO2-PANI-PTSA composites: Synthesis, characterization, and utilization as supercapacitor electrode materials. Ionics 2020, 26, 5747–5756.

[39]

Chen, K. Y.; Yu Chen, G.; Hu, X. Y.; Wu, H.; Gu, M. W.; Luan, Y. G.; Zhang, B. Y.; Hu, Y. H.; Cheng, Y. F.; Tang, T. et al. Lattice matching engineering driven growth of large-area 2D CeO2 for high-performance photodetection. Adv. Mater. Interfaces 2024, 11, 2300732.

[40]

Zamiri, R.; Abbastabar Ahangar, H.; Kaushal, A.; Zakaria, A.; Zamiri, G.; Tobaldi, D.; Ferreira, J. M. F. Dielectrical properties of CeO2 nanoparticles at different temperatures. PLoS One 2015, 10, e0122989.

[41]

Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

[42]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[43]

Kudrius, T.; Šlekys, G.; Juodkazis, S. Surface-texturing of sapphire by femtosecond laser pulses for photonic applications. J. Phys. D: Appl. Phys. 2010, 43, 145501.

[44]

Lappalainen, J.; Tuller, H. L.; Lantto, V. Electronic conductivity and dielectric properties of nanocrystalline CeO2 films. J. Electroceram. 2004, 13, 129–133.

[45]

Nishikawa, Y.; Fukushima, N.; Yasuda, N.; Nakayama, K.; Ikegawa, S. Electrical properties of single crystalline CeO2 high-k gate dielectrics directly grown on Si (111). Jpn. J. Appl. Phys. 2002, 41, 2480–2483.

[46]

Jang, S. K.; Youn, J.; Song, Y. J.; Lee, S. Synthesis and characterization of hexagonal boron nitride as a gate dielectric. Sci. Rep. 2016, 6, 30449.

[47]

Zhang, Y. C.; Yu, J.; Zhu, R. X.; Wang, M. D.; Tan, C. W.; Tu, T.; Zhou, X. H.; Zhang, C. C.; Yu, M. S.; Gao, X. Y. et al. A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat. Electron. 2022, 5, 643–649.

[48]
International Roadmap for Devices and Systems; IEEE, 2023 . https://irds.ieee.org/editions/2023
[49]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[50]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[51]

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

[52]

Cao, Y.; Mishchenko, A.; Yu, G. L.; Khestanova, E.; Rooney, A. P.; Prestat, E.; Kretinin, A. V.; Blake, P.; Shalom, M. B.; Woods, C. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 2015, 15, 4914–4921.

Nano Research
Pages 8592-8599
Cite this article:
Shi Z, Imran M, Chen X, et al. Towards wafer-scale growth of two-dimensional cerium dioxide single crystal with high dielectric performance. Nano Research, 2024, 17(9): 8592-8599. https://doi.org/10.1007/s12274-024-6761-8
Topics:

372

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 January 2024
Revised: 13 May 2024
Accepted: 13 May 2024
Published: 05 July 2024
© Tsinghua University Press 2024
Return