AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrical control of excitonic oscillator strength and spatial distribution in a monolayer semiconductor

Yanming Wang1,2Junrong Zhang1,2Tianhua Ren3Meng Xia2Long Fang2,4Xiangyi Wang2Xingwang Zhang1,2Kai Zhang1,2( )Junyong Wang1,2( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
College of New Energy, Inner Mongolia University of Technology, Hohhot 010051, China
Show Author Information

Graphical Abstract

Electrical control of excitonic oscillator strength and spatial distribution was demonstrated by exploiting the tightly bound excitons and the planar nature of monolayer semiconductors.

Abstract

Electrical modulation of luminescence is significant to modern light-emitting devices. Monolayer transition metal dichalcogenides are emerging direct-bandgap luminescent materials with unique excitonic properties, and the multiple exciton complexes provide new opportunities to modulate the property of luminescence in atomically thin semiconductors. Here, we report an electrical control of exciton emission in the oscillator strength and spatial distribution of excitons in a monolayer WS2. Effective modulation of excitonic emission intensity with a degree of modulation of ~ 92% has been demonstrated by an electric field at room temperature. The spatial carrier redistribution tuned by a lateral electric field results in distinct excitonic emission patterns by design. The modulation approach to exciton oscillator strength and distribution provides an efficient way to investigate the exciton diffusion dynamics and to construct electrically tunable optoelectronic devices.

Electronic Supplementary Material

Download File(s)
6762_ESM1.pdf (1.7 MB)
6762_ESM2.pptx (138.8 MB)

References

[1]

Ren, A. B.; Wang, H.; Zhang, W.; Wu, J.; Wang, Z. M.; Penty, R. V.; White, I. H. Emerging light-emitting diodes for next-generation data communications. Nat. Electron. 2021, 4, 559–572.

[2]

Liu, Z. J.; Lin, C. H.; Hyun, B. R.; Sher, C. W.; Lv, Z. J.; Luo, B. Q.; Jiang, F. L.; Wu, T.; Ho, C. H.; Kuo, H. C. et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 2020, 9, 83.

[3]

Babiński, A.; Wysmołek, A.; Tomaszewicz, T.; Baranowski, J. M.; Leon, R.; Lobo, C.; Jagadish, C. Electrically modulated photoluminescence in self-organized InGaAs/GaAs quantum dots. Appl. Phys. Lett. 1998, 73, 2811–2813.

[4]

Boone, T. D.; Tsukamoto, H.; Woodall, J. M. Intensity and spatial modulation of spontaneous emission in GaAs by field aperture selecting transport. Appl. Phys. Lett. 2003, 82, 3197–3199.

[5]

Park, S. J.; Link, S.; Miller, W. L.; Gesquiere, A.; Barbara, P. F. Effect of electric field on the photoluminescence intensity of single CdSe nanocrystals. Chem. Phys. 2007, 341, 169–174.

[6]

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

[7]

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

[8]

Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

[9]

Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

[10]

Chen, W. W.; Zheng, C. H.; Pei, J. J.; Zhan, H. B. External field regulation strategies for exciton dynamics in 2D TMDs. Opt. Mater. Express 2023, 13, 1007–1030.

[11]

Gao, M. L.; Yu, L. X.; Lv, Q.; Kang, F. Y.; Huang, Z. H.; Lv, R. T. Photoluminescence manipulation in two-dimensional transition metal dichalcogenides. J. Materiomics 2023, 9, 768–786.

[12]

del Águila, A. G.; Wong, Y. R.; Wadgaonkar, I.; Fieramosca, A.; Liu, X.; Vaklinova, K.; Dal Forno, S.; Do, T. T. H.; Wei, H. Y.; Watanabe, K. et al. Ultrafast exciton fluid flow in an atomically thin MoS2 semiconductor. Nat. Nanotechnol. 2023, 18, 1012–1019.

[13]

Yu, Y. L.; Bataller, A. W.; Younts, R.; Yu, Y. F.; Li, G. Q.; Puretzky, A. A.; Geohegan, D. B.; Gundogdu, K.; Cao, L. Y. Room-temperature electron-hole liquid in monolayer MoS2. ACS Nano 2019, 13, 10351–10358.

[14]

Yu, Y. L.; Yu, Y. F.; Li, G. Q.; Puretzky, A. A.; Geohegan, D. B.; Cao, L. Y. Giant enhancement of exciton diffusivity in two-dimensional semiconductors. Sci. Adv. 2020, 6, eabb4823.

[15]

Lien, D. H.; Uddin, S. Z.; Yeh, M.; Amani, M.; Kim, H.; Ager III, J. W.; Yablonovitch, E.; Javey, A. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019, 364, 468–471.

[16]

Regan, E. C.; Wang, D. Q.; Paik, E. Y.; Zeng, Y. X.; Zhang, L.; Zhu, J. H.; MacDonald, A. H.; Deng, H.; Wang, F. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 2022, 7, 778–795.

[17]

Xu, W. G.; Liu, W. W.; Schmidt, J. F.; Zhao, W. J.; Lu, X.; Raab, T.; Diederichs, C.; Gao, W. B.; Seletskiy, D. V.; Xiong, Q. H. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 2017, 541, 62–67.

[18]

Li, H.; Li, H. L.; Wang, X. Z.; Nie, Y. F.; Liu, C.; Dai, Y.; Ling, J. Y.; Ding, M. N.; Ling, X.; Xie, D. Q. et al. Spontaneous polarity flipping in a 2D heterobilayer induced by fluctuating interfacial carrier flows. Nano Lett. 2021, 21, 6773–6780.

[19]

Cui, Q. L.; Luo, Z. Y.; Cui, Q. R.; Zhu, W.; Shou, H. W.; Wu, C. Q.; Liu, Z. F.; Lin, Y. X.; Zhang, P. J.; Wei, S. Q. et al. Robust and high photoluminescence in WS2 monolayer through in situ defect engineering. Adv. Funct. Mater. 2021, 31, 2105339.

[20]

Hou, J. W.; Wang, X.; Fu, D. Y.; Ko, C.; Chen, Y. B.; Sun, Y. F.; Lee, S.; Wang, K. X.; Dong, K. C.; Sun, Y. H. et al. Modulating photoluminescence of monolayer molybdenum disulfide by metal-insulator phase transition in active substrates. Small 2016, 12, 3976–3984.

[21]

Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

[22]

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

[23]

Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.

[24]

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

[25]

Zhu, G. P.; Zhang, L.; Li, W. F.; Shi, X. Q.; Zou, Z.; Guo, Q. Q.; Li, X.; Xu, W. G.; Jie, J. S.; Wang, T. et al. Room-temperature high-speed electrical modulation of excitonic distribution in a monolayer semiconductor. Nat. Commun. 2023, 14, 6701.

[26]

Wang, S. F.; Wang, J. Y.; Zhao, W. J.; Giustiniano, F.; Chu, L. Q.; Verzhbitskiy, I.; Zhou Yong, J.; Eda, G. Efficient carrier-to-exciton conversion in field emission tunnel diodes based on MIS-type van der Waals heterostack. Nano Lett. 2017, 17, 5156–5162.

[27]

Lee, Y.; Forte, J. D. S.; Chaves, A.; Kumar, A.; Tran, T. T.; Kim, Y.; Roy, S.; Taniguchi, T.; Watanabe, K.; Chernikov, A. et al. Boosting quantum yields in two-dimensional semiconductors via proximal metal plates. Nat. Commun. 2021, 12, 7095.

[28]

Plechinger, G.; Nagler, P.; Arora, A.; Schmidt, R.; Chernikov, A.; del Águila, A. G.; Christianen, P. C. M.; Bratschitsch, R.; Schüller, C.; Korn, T. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide. Nat. Commun. 2016, 7, 12715.

[29]

Paur, M.; Molina-Mendoza, A. J.; Bratschitsch, R.; Watanabe, K.; Taniguchi, T.; Mueller, T. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun. 2019, 10, 1709.

[30]

Troue, M.; Figueiredo, J.; Sigl, L.; Paspalides, C.; Katzer, M.; Taniguchi, T.; Watanabe, K.; Selig, M.; Knorr, A.; Wurstbauer, U. et al. Extended spatial coherence of interlayer excitons in MoSe2/WSe2 heterobilayers. Phys. Rev. Lett. 2023, 131, 036902.

[31]

Rana, F.; Koksal, O.; Jung, M.; Shvets, G.; Vamivakas, A. N.; Manolatou, C. Exciton-trion polaritons in doped two-dimensional semiconductors. Phys. Rev. Lett. 2021, 126, 127402.

[32]

Yu, H. Y.; Cui, X. D.; Xu, X. D.; Yao, W. Valley excitons in two-dimensional semiconductors. Natl. Sci. Rev. 2015, 2, 57–70.

[33]

Yue, Y. C.; Chen, J. C.; Zhang, Y.; Ding, S. S.; Zhao, F. L.; Wang, Y.; Zhang, D. H.; Li, R. J.; Dong, H. L.; Hu, W. P. et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 22435–22444.

[34]

Di Bartolomeo, A.; Genovese, L.; Giubileo, F.; Iemmo, L.; Luongo, G.; Foller, T.; Schleberger, M. Hysteresis in the transfer characteristics of MoS2 transistors. 2D Mater. 2018, 5, 015014.

[35]

Guo, Y.; Wei, X. L.; Shu, J. P.; Liu, B.; Yin, J. B.; Guan, C. R.; Han, Y. X.; Gao, S.; Chen, Q. Charge trapping at the MoS2–SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 2015, 106, 103109.

[36]

Shu, J. P.; Wu, G. T.; Guo, Y.; Liu, B.; Wei, X. L.; Chen, Q. The intrinsic origin of hysteresis in MoS2 field effect transistors. Nanoscale 2016, 8, 3049–3056.

Nano Research
Pages 8424-8430
Cite this article:
Wang Y, Zhang J, Ren T, et al. Electrical control of excitonic oscillator strength and spatial distribution in a monolayer semiconductor. Nano Research, 2024, 17(9): 8424-8430. https://doi.org/10.1007/s12274-024-6762-7
Topics:

268

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 March 2024
Revised: 09 May 2024
Accepted: 13 May 2024
Published: 01 July 2024
© Tsinghua University Press 2024
Return