AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Thermal transports in the MXenes family: Opportunities and challenges

Yurui Liu1Yue Wu1( )Xinwei Wang2( )
Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Ames, IA 50011, USA
Department of Mechanical Engineering, 271 Applied Science Complex II, 1915 Scholl Road, Iowa State University, Ames, IA 50011, USA
Show Author Information

Graphical Abstract

Transition metal carbides known as MXene are a newly emerging member of the two-dimensional (2D) materials family. Thanks to their superior intrinsic thermal conductivity, high tunable structure and surface functional groups, thermal transports in MXene have attached tremendous research interests. To reveal the fundamentals of MXene thermal transport, we summarized advanced research and progress in this article.

Abstract

The carbides and nitrides of transition metals known as “MXenes” refer to a fast-growing family of two-dimensional materials discovered in 2011. Thanks to their unique nanolayer structure, superior electrical, mechanical, and thermal properties, MXenes have shown great potential in addressing the critical overheating issues that jeopardize the performance, stability, and lifetime of high-energy-density components in modern devices such as microprocessors, integrated circuits, and capacitors, etc. The outstanding intrinsic thermal conductivity of MXenes has been proved by experimental and theoretical research. Numerous MXenes-enabled high thermal conductivity composites incorporated with polymer matrix have also been reported and widely used as thermal management materials. Considering the booming heat dissipation demands, MXenes-enabled thermal management material is an extremely valuable and scalable option for modern electronics industries. However, the fundamental thermal transport mechanisms behind the MXenes family remain unclear. The MXene thermal conductivity disparities between the theoretical prediction and experimental results are still significant. To better understand the thermal conduction in MXenes and provide more insights for engineering high-performance MXene thermal management materials, in this article, we summarize recent progress on thermal conductive MXenes. The essential factors that affect MXenes intrinsic thermal conductivities are tackled, selected MXenes-polymer composites are highlighted, and prospects and challenges are also discussed.

References

[1]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[2]

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

[3]

Aghamohammadi, H.; Amousa, N.; Eslami-Farsani, R. Recent advances in developing the MXene/polymer nanocomposites with multiple properties: A review study. Synth. Met. 2021, 273, 116695.

[4]

Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C 2017, 5, 2488–2503.

[5]

Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 2014, 16, 7841–7849.

[6]

Jamil, F.; Ali, H. M.; Janjua, M. M. MXene based advanced materials for thermal energy storage: A recent review. J. Energy Storage 2021, 35, 102322.

[7]

Wang, J. F.; Shen, M. M.; Liu, Z. X.; Wang, W. J. MXene materials for advanced thermal management and thermal energy utilization. Nano Energy 2022, 97, 107177.

[8]
Moore, G. E. Progress in digital integrated electronics [Technical literaiture, Copyright 1975 IEEE. Reprinted, with permission. Technical Digest. International Electron Devices Meeting, IEEE, 1975, pp. 11-13.]. IEEE Solid State Circ. Soc. Newsl. 2006 , 11, 36–37.
[9]

Schelling, P. K.; Shi, L.; Goodson, K. E. Managing heat for electronics. Mater. Today 2005, 8, 30–35.

[10]

Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174.

[11]

Cui, Y.; Li, M.; Hu, Y. J. Emerging interface materials for electronics thermal management: Experiments, modeling, and new opportunities. J. Mater. Chem. C 2020, 8, 10568–10586.

[12]

El Sachat, A.; Alzina, F.; Sotomayor Torres, C. M.; Chavez-Angel, E. Heat transport control and thermal characterization of low-dimensional materials: A review. Nanomaterials 2021, 11, 175.

[13]

Pop, E.; Varshney, V.; Roy, A. K. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 2012, 37, 1273–1281.

[14]

Chen, S. S.; Moore, A. L.; Cai, W. W.; Suk, J. W.; An, J.; Mishra, C.; Amos, C.; Magnuson, C. W.; Kang, J.; Shi, L. et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 2011, 5, 321–328.

[15]

Balandin, A. A.; Nika, D. L. Phononics in low-dimensional materials. Mater. Today 2012, 15, 266–275.

[16]

Lindsay, L.; Broido, D. A. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys. Rev. B 2011, 84, 155421.

[17]

Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.

[18]

Liu, J.; Choi, G. M.; Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 2014, 116, 233107.

[19]

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Hight Walker, A. R.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

[20]

Wang, R. D.; Wang, T. Y.; Zobeiri, H.; Yuan, P. Y.; Deng, C.; Yue, Y. A.; Xu, S.; Wang, X. W. Measurement of the thermal conductivities of suspended MoS2 and MoSe2 by nanosecond ET-Raman without temperature calibration and laser absorption evaluation. Nanoscale 2018, 10, 23087–23102.

[21]

Yuan, P. Y.; Wang, R. D.; Wang, T. Y.; Wang, X. W.; Xie, Y. S. Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS2: 2.4 to 37.8 nm. Phys. Chem. Chem. Phys. 2018, 20, 25752–25761.

[22]

Sun, Z. M. Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 2011, 56, 143–166.

[23]

Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494.

[24]

Mathis, T. S.; Maleski, K.; Goad, A.; Sarycheva, A.; Anayee, M.; Foucher, A. C.; Hantanasirisakul, K.; Shuck, C. E.; Stach, E. A.; Gogotsi, Y. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 2021, 15, 6420–6429.

[25]

VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[26]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[27]

Chen, N. J.; Yang, W. Q.; Zhang, C. F. Perspectives on preparation of two-dimensional MXenes. Sci. Technol. Adv. Mater. 2021, 22, 917–930.

[28]

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chem. Mater. 2017, 29, 7633–7644.

[29]

Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. Atomic defects in monolayer titanium carbide (Ti3C2T x ) MXene. ACS Nano 2016, 10, 9193–9200.

[30]

Zamhuri, A.; Lim, G. P.; Ma, N. L.; Tee, K. S.; Soon, C. F. MXene in the lens of biomedical engineering: Synthesis, applications and future outlook. Biomed. Eng. OnLine 2021, 20, 33.

[31]

Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.

[32]

Zhang, Z.; Zhang, F.; Wang, H. C.; Ho Chan, C.; Lu, W.; Dai, J. Y. Substrate orientation-induced epitaxial growth of face centered cubic Mo2C superconductive thin film. J. Mater. Chem. C 2017, 5, 10822–10827.

[33]

Xue, Q.; Zhang, H. J.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Huang, Y.; Huang, Y.; Deng, Q. H.; Zhou, J. et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 2017, 29, 1604847.

[34]

Zhao, S. J.; Kang, W.; Xue, J. M. MXene nanoribbons. J. Mater. Chem. C 2015, 3, 879–888.

[35]

Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1–8.

[36]

Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

[37]

Guo, L. C.; Zhang, Z. Y.; Li, M. H.; Kang, R. Y.; Chen, Y. P.; Song, G. C.; Han, S. T.; Lin, C. T.; Jiang, N.; Yu, J. H. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying. Compos. Commun. 2020, 19, 134–141.

[38]

Zhu, Y.; Zhao, X. B.; Peng, Q. Y.; Zheng, H. W.; Xue, F. H.; Li, P. Y.; Xu, Z. H.; He, X. D. Flame-retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy. Nanoscale Adv. 2021, 3, 5683–5693.

[39]
Chen, G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons; Oxford University Press: Oxford, 2005.
[40]

Lepri, S.; Livi, R.; Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 2003, 377, 1–80.

[41]
Morelli, D. T.; Slack, G. A. High lattice thermal conductivity solids. In High Thermal Conductivity Materials. Shindé, S. L.; Goela, J. S., Eds.; Springer: New York, 2006; pp 37–68.
[42]
Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Clarendon Press: Oxford, 2001.
[43]

Chen, G. Particularities of heat conduction in nanostructures. J. Nanopart. Res. 2000, 2, 199–204.

[44]

Chen, G. Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transfer 1997, 119, 220–229.

[45]

Kumar, S.; Schwingenschlögl, U. Thermoelectric performance of functionalized Sc2C MXenes. Phys. Rev. B 2016, 94, 035405.

[46]

Lu, S.; Ren, W. J.; He, J.; Yu, C. Q.; Jiang, P. F.; Chen, J. Enhancement of the lattice thermal conductivity of two-dimensional functionalized MXenes by inversion symmetry breaking. Phys. Rev. B 2022, 105, 165301.

[47]

Klemens, P. G.; Pedraza, D. F. Thermal conductivity of graphite in the basal plane. Carbon 1994, 32, 735–741.

[48]

Klemens, P. G. Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 2001, 22, 265–275.

[49]

Qian, X.; Zhou, J. W.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202.

[50]

Zha, X.-H.; Huang, Q.; He, J.; He, H. M.; Zhai, J. Y.; Francisco, J. S.; Du, S. Y. The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 2016, 6, 27971.

[51]

Zha, X. H.; Yin, J. S.; Zhou, Y. H.; Huang, Q.; Luo, K.; Lang, J. J.; Francisco, J. S.; He, J.; Du, S. Y. Intrinsic structural, electrical, thermal, and mechanical properties of the promising conductor Mo2C MXene. J. Phys. Chem. C 2016, 120, 15082–15088.

[52]

Zha, X. H.; Zhou, J.; Zhou, Y. H.; Huang, Q.; He, J.; Francisco, J. S.; Luo, K.; Du, S. Y. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale 2016, 8, 6110–6117.

[53]

Gu, X. K.; Wei, Y. J.; Yin, X. B.; Li, B. W.; Yang, R. G. Colloquium: Phononic thermal properties of two-dimensional materials. Rev. Mod. Phys. 2018, 90, 041002.

[54]

Shi, L. Nonresistive heat transport by collective phonon flow: “Second sound” has been observed in graphite. Science 2019, 364, 332–333.

[55]

Lee, S.; Broido, D.; Esfarjani, K.; Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 2015, 6, 6290.

[56]

Cepellotti, A.; Fugallo, G.; Paulatto, L.; Lazzeri, M.; Mauri, F.; Marzari, N. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 2015, 6, 6400.

[57]
Fermi, I.; Pasta, P.; Ulam, S.; Tsingou, M. Studies of the nonlinear problems: Los Alamos Scientific Lab. N. Mex.
[58]

Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 1998, 57, 14958–14973.

[59]

Guo, Z. L.; Miao, N. H.; Zhou, J.; Pan, Y. C.; Sun, Z. M. Coincident modulation of lattice and electron thermal transport performance in MXenes via surface functionalization. Phys. Chem. Chem. Phys. 2018, 20, 19689–19697.

[60]

Sarikurt, S.; Çakır, D.; Keçeli, M.; Sevik, C. The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale 2018, 10, 8859–8868.

[61]

Gholivand, H.; Fuladi, S.; Hemmat, Z.; Salehi-Khojin, A.; Khalili-Araghi, F. Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2T z MXenes. J. Appl. Phys. 2019, 126, 065101.

[62]

Wang, A.; Li, S. H.; Zhang, X. Y.; Bao, H. Roles of electrons on the thermal transport of 2D metallic MXenes. Phys. Rev. Mater. 2022, 6, 014009.

[63]

Wu, H.; Gu, J. X.; Li, Z. C.; Liu, W. X.; Bao, H.; Lin, H.; Yue, Y. A. Characterization of phonon thermal transport of Ti3C2T x MXene thin film. J. Phys.: Condens. Matter 2022, 34, 155704.

[64]

Yu, L. T.; Huang, D. Z.; Wang, X. Z.; Yu, W.; Yue, Y. A. Tuning thermal and electrical properties of MXenes via dehydration. Phys. Chem. Chem. Phys. 2022, 24, 25969–25978.

[65]

Chen, L.; Shi, X. G.; Yu, N. J.; Zhang, X.; Du, X. Z.; Lin, J. Measurement and analysis of thermal conductivity of Ti3C2T x MXene films. Materials 2018, 11, 1701.

[66]

Liu, R.; Li, W. H. High-thermal-stability and high-thermal-conductivity Ti3C2T x MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 2018, 3, 2609–2617.

[67]

Gandi, A. N.; Alshareef, H. N.; Schwingenschlögl, U. Thermoelectric performance of the MXenes M2CO2 (M = Ti, Zr, or Hf). Chem. Mater. 2016, 28, 1647–1652.

[68]
Rohsenow, W. M.; Hartnett, J. P.; Cho, Y. I. Handbook of Heat Transfer, 3rd ed.; McGraw-Hill: New York, 1998.
[69]

Kim, H.; Anasori, B.; Gogotsi, Y.; Alshareef, H. N. Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 2017, 29, 6472–6479.

[70]

Lu, X. F.; Zhang, Q. H.; Liao, J. C.; Chen, H. Y.; Fan, Y. C.; Xing, J. J.; Gu, S. J.; Huang, J. L.; Ma, J. X.; Wang, J. C. et al. High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi,Sb)2Te3 matrix. Adv. Energy Mater. 2020, 10, 1902986.

[71]

Schultz, T.; Frey, N. C.; Hantanasirisakul, K.; Park, S.; May, S. J.; Shenoy, V. B.; Gogotsi, Y.; Koch, N. Surface termination dependent work function and electronic properties of Ti3C2T x MXene. Chem. Mater. 2019, 31, 6590–6597.

[72]

Persson, I.; Näslund, L. Å.; Halim, J.; Barsoum, M. W.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persson, P. O. Å. On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Mater. 2018, 5, 015002.

[73]

Hart, J. L.; Hantanasirisakul, K.; Lang, A. C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J. T.; May, S. J.; Gogotsi, Y.; Taheri, M. L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522.

[74]

Fujii, M.; Zhang, X.; Xie, H. Q.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 2005, 95, 065502.

[75]

Wang, R. D.; Xu, S.; Yue, Y. A.; Wang, X. W. Thermal behavior of materials in laser-assisted extreme manufacturing: Raman-based novel characterization. Int. J. Extrem. Manuf. 2020, 2, 032004.

[76]

Wang, R. D.; Hunter, N.; Zobeiri, H.; Xu, S.; Wang, X. W. Critical problems faced in Raman-based energy transport characterization of nanomaterials. Phys. Chem. Chem. Phys. 2022, 24, 22390–22404.

[77]

Zobeiri, H.; Wang, R. D.; Deng, C.; Zhang, Q. Y.; Wang, X. W. Polarized Raman of nanoscale two-dimensional materials: Combined optical and structural effects. J. Phys. Chem. C 2019, 123, 23236–23245.

[78]

Xu, S.; Fan, A.; Wang, H.; Zhang, X.; Wang, X. Raman-based nanoscale thermal transport characterization: A critical review. Int. J. Heat Mass Transfer 2020, 154, 119751.

[79]

Li, C. Z.; Xu, S.; Yue, Y. A.; Yang, B.; Wang, X. W. Thermal characterization of carbon nanotube fiber by time-domain differential Raman. Carbon 2016, 103, 101–108.

[80]

Wang, T. Y.; Xu, S.; Hurley, D. H.; Yue, Y. A.; Wang, X. W. Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement. Opt. Lett. 2016, 41, 80–83.

[81]

Wang, T. Y.; Han, M.; Wang, R. D.; Yuan, P. Y.; Xu, S.; Wang, X. W. Characterization of anisotropic thermal conductivity of suspended nm-thick black phosphorus with frequency-resolved Raman spectroscopy. J. Appl. Phys. 2018, 123, 145104.

[82]

Yuan, P. Y.; Wang, R. D.; Tan, H.; Wang, T. Y.; Wang, X. W. Energy transport state resolved Raman for probing interface energy transport and hot carrier diffusion in few-layered MoS2. ACS Photonics 2017, 4, 3115–3129.

[83]

Yuan, P. Y.; Tan, H.; Wang, R. D.; Wang, T. Y.; Wang, X. W. Very fast hot carrier diffusion in unconstrained MoS2 on a glass substrate: Discovered by picosecond ET-Raman. RSC Adv. 2018, 8, 12767–12778.

[84]

Zobeiri, H.; Wang, R. D.; Zhang, Q. Y.; Zhu, G. J.; Wang, X. W. Hot carrier transfer and phonon transport in suspended nm WS2 films. Acta Mater. 2019, 175, 222–237.

[85]

Zobeiri, H.; Hunter, N.; Wang, R. D.; Liu, X. M.; Tan, H.; Xu, S.; Wang, X. W. Thermal conductance between water and nm-thick WS2: Extremely localized probing using nanosecond energy transport state-resolved Raman. Nanoscale Adv. 2020, 2, 5821–5832.

[86]

Lin, H.; Wang, R. D.; Zobeiri, H.; Wang, T. Y.; Xu, S.; Wang, X. W. The in-plane structure domain size of nm-thick MoSe2 uncovered by low-momentum phonon scattering. Nanoscale 2021, 13, 7723–7734.

[87]

Zobeiri, H.; Wang, R. D.; Wang, T. Y.; Lin, H.; Deng, C.; Wang, X. W. Frequency-domain energy transport state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe2. Int. J. Heat Mass Transfer 2019, 133, 1074–1085.

[88]

Yao, J. R.; Zhou, J. T.; Yang, F.; Peng, G. Y.; Liu, Y. J.; Yao, Z. J.; Wu, F.; Zeng, H. B. Multi-functional and multi-scenario applications for MXene aerogels with synergistically enhanced asymmetric modules. Nano Res. 2024, 17, 3359–3368.

[89]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

[90]

Wang, J. E.; Song, T. L.; Ming, W.; Yele, M.; Chen, L. F.; Zhang, H.; Zhang, X. J.; Liang, B. L.; Wang, G. S. High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance. Nano Res. 2024, 17, 2061–2069.

[91]

Cao, Y.; Deng, Q. H.; Liu, Z. D.; Shen, D. Y.; Wang, T.; Huang, Q.; Du, S. Y.; Jiang, N.; Lin, C. T.; Yu, J. H. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Adv. 2017, 7, 20494–20501.

[92]
Yan, C. Z.; Ji, C.; Zeng, X. L.; Sun, R.; Wong, C. P. Interconnecting the promising MXenes via Ag nanowire in epoxy nanocomposites for high-performance thermal management applications. In Proceedings of the 2018 19th International Conference on Electronic Packaging Technology, Shanghai, China, 2018; pp 510–512.
[93]

Kang, R. Y.; Zhang, Z. Y.; Guo, L. C.; Cui, J. F.; Chen, Y. P.; Hou, X.; Wang, B.; Lin, C. T.; Jiang, N.; Yu, J. H. Enhanced thermal conductivity of epoxy composites filled with 2D transition metal carbides (MXenes) with ultralow loading. Sci. Rep. 2019, 9, 9135.

[94]

Aakyiir, M.; Yu, H. M.; Araby, S.; Wang, R. Y.; Michelmore, A.; Meng, Q. S.; Losic, D.; Choudhury, N. R.; Ma, J. Electrically and thermally conductive elastomer by using MXene nanosheets with interface modification. Chem. Eng. J. 2020, 397, 125439.

[95]

Chen, L.; Cao, Y.; Zhang, X.; Guo, X. B.; Song, P.; Chen, K.; Lin, J. Anisotropic and high thermal conductivity of epoxy composites containing multilayer Ti3C2T x MXene nanoflakes. J. Mater. Sci. 2020, 55, 16533–16543.

[96]

Ji, C.; Wang, Y.; Ye, Z. Q.; Tan, L. Y.; Mao, D. S.; Zhao, W. G.; Zeng, X. L.; Yan, C. Z.; Sun, R.; Kang, D. J. et al. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials. ACS Appl. Mater. Interfaces 2020, 12, 24298–24307.

[97]

Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

[98]

Mazhar, S.; Qarni, A. A.; Ul Haq, Y.; Ul Haq, Z.; Murtaza, I. Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram. Int. 2020, 46, 12593–12605.

[99]

Wang, D. Z.; Lin, Y.; Hu, D. W.; Jiang, P. K.; Huang, X. Y. Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Composites Part A 2020, 130, 105754.

[100]

Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021, 4, 274–285.

[101]

Liu, L.; Ying, G. B.; Wen, D.; Zhang, K. C.; Hu, C.; Zheng, Y. T.; Zhang, C.; Wang, X.; Wang, C. Aqueous solution-processed MXene (Ti3C2T x ) for non-hydrophilic epoxy resin-based composites with enhanced mechanical and physical properties. Mater. Des. 2021, 197, 109276.

[102]

Ma, S. F.; Zhu, S. L.; Liu, M. L.; Zhong, B. C.; Chen, Y. J.; Luo, Y. F.; Liu, F.; Jia, Z. X.; Jia, D. M. A high-performance, thermal and electrical conductive elastomer composite based on Ti3C2 MXene. Composites Part A 2021, 145, 106292.

[103]

Wang, D. Z.; Wei, H.; Lin, Y.; Jiang, P. K.; Bao, H.; Huang, X. Y. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocomposites via filler-filler interface engineering. Compos. Sci. Technol. 2021, 213, 108953.

[104]

Zhan, Y. J.; Nan, B. F.; Liu, Y. C.; Jiao, E. X.; Shi, J.; Lu, M. G.; Wu, K. Multifunctional cellulose-based fireproof thermal conductive nanocomposite films assembled by in-situ grown SiO2 nanoparticle onto MXene. Chem. Eng. J. 2021, 421, 129733.

[105]

Jiao, E. X.; Wu, K.; Liu, Y. C.; Lu, M. P.; Hu, Z. R.; Chen, B.; Shi, J.; Lu, M. G. Ultrarobust MXene-based laminated paper with excellent thermal conductivity and flame retardancy. Composites Part A 2021, 146, 106417.

[106]

Zhou, B.; Li, Q. T.; Xu, P. H.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 2021, 13, 2378–2388.

[107]

Liu, H. B.; Huang, Z. Y.; Chen, T.; Su, X. Q.; Liu, Y. N.; Fu, R. L. Construction of 3D MXene/Silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 2022, 427, 131540.

[108]

Liu, H. G.; Wang, Z.; Yang, Y. J.; Wu, S. Q.; Wang, C. K.; You, C. Y.; Tian, N. Thermally conductive MWCNTs/Fe3O4/Ti3C2T x MXene multi-layer films for broadband electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 130, 75–85.

[109]

Qin, Y.; Li, L. H.; Li, M. H.; Wei, X. Z.; Xiong, S. Y.; Xia, J. C.; Kong, X. D.; Wang, Y. D.; Cai, T.; Deng, L. F. et al. Flexible MXene/copper/cellulose nanofiber heat spreader films with enhanced thermal conductivity. Nanotechnol. Rev. 2022, 11, 1583–1591.

[110]

Yan, Y. Z.; Li, S. W.; Park, S. S.; Zhang, W. J.; Lee, J. S.; Kim, J. R.; Seong, D. G.; Ha, C. S. “One stone, two birds” solvent system to fabricate microcrystalline cellulose-Ti3C2T x nanocomposite film as a flexible dielectric and thermally conductive material. Nano Res. 2023, 16, 3240–3253.

[111]

Huang, X.; Tuersun, Y.; Huang, M.; Lin, W.; Qiu, W.; Chu, S. Highly enhanced thermal conductivity from boron nitride nanosheets and MXene phonon resonance in 3D PMMA spheres composites. Mater. Today Sustain. 2023, 21, 100269.

[112]

Lee, J.; Kim, J. Enhancing the thermal conductivity of PEG composites with freeze-drying and surface treatment of MXene and CNT. Mater. Today Chem. 2023, 27, 101305.

[113]

Kong, X. D.; Song, G. C.; Chen, Y. P.; Chen, X. M.; Li, M. H.; Li, L. H.; Wang, Y. D.; Gong, P.; Zhang, Z. B.; Zhang, J. X. et al. Mannitol enhanced thermal conductivity and environmental stability of highly aligned MXene composite film. Compos. Sci. Technol. 2023, 241, 110141.

[114]

Pietrak, K.; Wiśniewski, T. S. A review of models for effective thermal conductivity of composite materials. J. Power Technol. 2015, 95, 14–24.

[115]

Foygel, M.; Morris, R. D.; Anez, D.; French, S.; Sobolev, V. L. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 2005, 71, 104201.

[116]

Bird, R. B. Transport phenomena. Appl. Mech. Rev. 2002, 55, R1–R4.

[117]
Maxwell, J. C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, 1873.
[118]

Swartz, E. T.; Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 1989, 61, 605–668.

[119]

Ruan, K.; Shi, X.; Guo, Y.; Gu, J. Interfacial thermal resistance in thermally conductive polymer composites: A review. Compos. Commun. 2020, 22, 100518.

[120]

Hasselman, D. P. H.; Johnson, L. F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 1987, 21, 508–515.

[121]

Nan, C. W.; Birringer, R.; Clarke, D. R.; Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81, 6692–6699.

[122]

Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1–28.

[123]

He, Y. J.; Shao, Y. W.; Xiao, Y. Y.; Yang, J. H.; Qi, X. D.; Wang, Y. Multifunctional phase change composites based on elastic mxene/silver nanowire sponges for excellent thermal/solar/electric energy storage, shape memory, and adjustable electromagnetic interference shielding functions. ACS Appl. Mater. Interfaces 2022, 14, 6057–6070.

Nano Research
Pages 7700-7716
Cite this article:
Liu Y, Wu Y, Wang X. Thermal transports in the MXenes family: Opportunities and challenges. Nano Research, 2024, 17(8): 7700-7716. https://doi.org/10.1007/s12274-024-6763-6
Topics:

327

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 April 2024
Revised: 13 May 2024
Accepted: 13 May 2024
Published: 26 June 2024
© Tsinghua University Press 2024
Return