Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The growth of Li dendrites poses potential safety hazard to lithium-ion batteries (LIBs), and eliminating Li dendrites thoroughly stills face tough difficulties ahead. Thus, regulating Li-plating is a critical optimization-direction to address the issue. Herein, a “graphite-Li hybrid” anode with high reversibility is realized under the constant-capacity lithiation (CCL). Within CCL, the uniform distribution of Li-plating on the graphite surface is successfully achieved. The evolution in different states of solid electrolyte interphase (SEI) is investigated in detail to study the interaction between the potentials and impedance during the process of Li-intercalation and Li-deintercalation. Under the potential below 0 V and the state of charge (SOC) of 110% relative to the theoretical capacity, the F-rich SEI with high stability is constructed to hinder the emergency of Li dendrites and maintain the intact structure of graphite anode under long cycling. The cell presents more than 100% Coulombic efficiency (CE) with the 900 cycles, demonstrating the reversible Li-plating and the utilization of defects. And the CCL half-cell provides a good cycling performance and specific capacity of 900 cycles at 0.5 C, it is attributed to the synergy effect of stable inorganic-rich SEI and regulated active Li-plating.
Gong, H. W.; Hansen, T. The rise of China’s new energy vehicle lithium-ion battery industry: The coevolution of battery technological innovation systems and policies. Environ. Innov. Soc. Transit. 2023, 46, 100689.
Liu, Y. T.; Zhang, R. H.; Wang, J.; Wang, Y. Current and future lithium-ion battery manufacturing. iScience 2021, 24, 102332.
Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.
Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.
Gao, X. W.; Zhou, Y. N.; Han, D. Z.; Zhou, J. Q.; Zhou, D. Z.; Tang, W.; Goodenough, J. B. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864–1879.
Yao, Y. X.; Chen, X.; Yao, N.; Gao, J. H.; Xu, G.; Ding, J. F.; Song, C. L.; Cai, W. L.; Yan, C.; Zhang, Q. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202214828.
Zhang, T.; Paillard, E. Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery. Front. Chem. Sci. Eng. 2018, 12, 577–591.
Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater 2018, 12, 161–175.
Wu, S. P.; Lin, Y. L.; Xing, L. D.; Sun, G. Z.; Zhou, H. B.; Xu, K.; Fan, W. Z.; Yu, L.; Li, W. S. Stabilizing LiCoO2/graphite at high voltages with an electrolyte additive. ACS Appl. Mater. Interfaces 2019, 11, 17940–17951.
Acebedo, B.; Morant-Miñana, M. C.; Gonzalo, E.; Ruiz de Larramendi, I.; Villaverde, A.; Rikarte, J.; Fallarino, L. Current status and future perspective on lithium metal anode production methods. Adv. Energy Mater. 2023, 13, 2203744.
Wang, J. H.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7, 12032.
Xu, X. J.; Yue, X. Y.; Chen, Y. M.; Liang, Z. Li plating regulation on fast-charging graphite anodes by a triglyme-LiNO3 synergistic electrolyte additive. Angew. Chem., Int. Ed. 2023, 62, e202306963.
Cheng, Q.; Zhang, Y. Multi-channel graphite for high-rate lithium ion battery. J. Electrochem. Soc. 2018, 165, A1104–A1109.
Yue, X. Y.; Zhang, J.; Dong, Y. T.; Chen, Y. M.; Shi, Z. Q.; Xu, X. J.; Li, X. L.; Liang, Z. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries. Angew. Chem., Int. Ed. 2023, 62, e202302285.
Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50–56
Mundszinger, M.; Farsi, S.; Rapp, M.; Golla-Schindler, U.; Kaiser, U.; Wachtler, M. Morphology and texture of spheroidized natural and synthetic graphites. Carbon 2017, 111, 764–773.
Adenusi, H.; Chass, G. A.; Passerini, S.; Tian, K. V.; Chen, G.H. Lithium batteries and the solid electrolyte interphase (SEI)-progress and outlook. Adv. Energy Mater. 2023, 13, 2203307.
Sayavong, P.; Zhang, W. B.; Oyakhire, S. T.; Boyle, D. T.; Chen, Y. L.; Kim, S. C.; Vilá, R. A.; Holmes, S. E.; Kim, M. S.; Bent, S. F. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 2023, 145, 12342–12350.
Xia, Y. C.; Zhou, P.; Kong, X.; Tian, J. K.; Zhang, W. L.; Yan, S. S.; Hou, W. H.; Zhou, H. Y.; Dong, H.; Chen, X. X. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 2023, 8, 934–945.
He, X.; Bresser, D.; Passerini, S.; Baakes, F.; Krewer, U.; Lopez, J.; Mallia, C. T.; Shao-Horn, Y.; Cekic-Laskovic, I.; Wiemers-Meyer, S. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 2021, 6, 1036–1052.
He, M. F.; Guo, R.; Hobold, G. M.; Gao, H. N.; Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl. Acad. Sci. USA 2020, 117, 73–79.
Shi, F. F.; Pei, A.; Boyle, D. T.; Xie, J.; Yu, X. Y.; Zhang, X. K.; Cui, Y. Lithium metal stripping beneath the solid electrolyte interphase. Proc. Natl. Acad. Sci. USA 2018, 115, 8529–8534.
Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074.
Cai, Q. Q.; Jia, H.; Li, G. J.; Xie, Z. Y. T.; Zhou, X. T.; Ma, Z. K.; Xing, L. D.; Li, W. S. Outstanding performances of graphite||NMC622 pouch cells enabled by a non-inert diluent. J. Energy Chem. 2023, 81, 593–602.
Shi, J. L.; Ehteshami, N.; Ma, J. L.; Zhang, H.; Liu, H. D.; Zhang, X.; Li, J.; Paillard, E. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive. J. Power Sources 2019, 429, 67–74.
Liao, Y. Q.; Zhou, M. Y.; Yuan, L. X.; Huang, K.; Wang, D. H.; Han, Y.; Meng, J. T.; Zhang, Y.; Li, Z.; Huang, Y. H. Eco-friendly tetrahydropyran enables weakly solvating “4S” electrolytes for lithium-metal batteries. Adv. Energy Mater. 2023, 13, 2301477.
Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem., Int. Ed. 2021, 60, 4090–4097.
Vu, D. T. T.; Im, J.; Kim, J. H.; Han, J.; Chung, G. J.; Nguyen, G. T. H.; Seo, J.; Kim, M.; Hwang, E. H.; Kwon, Y. G. et al. Lithium plating-free 1 Ah-level high-voltage lithium-ion pouch battery via ambi-functional pentaerythritol disulfate. J. Energy Chem. 2023, 83, 229–238.
Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.
Kazyak, E.; Chen, K. H.; Chen, Y.; Cho, T. H.; Dasgupta, N. P. Enabling 4 C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte. Adv. Energy Mater. 2022, 12, 2102618.
Zhou, J. H.; Ma, K. N.; Lian, X. Y.; Shi, Q. T.; Wang, J. Q.; Chen, Z. J.; Guo, L. L.; Liu, Y.; Bachmatiuk, A.; Sun, J. et al. Eliminating graphite exfoliation with an artificial solid electrolyte interphase for stable lithium-ion batteries. Small 2022, 18, 2107460.
Sun, S. Y.; Yao, N.; Jin, C. B.; Xie, J.; Li, X. Y.; Zhou, M. Y.; Chen, X.; Li, B. Q.; Zhang, X. Q.; Zhang, Q. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase. Angew. Chem., Int. Ed. 2022, 61, e202208743.
Guo, J.; Li, Y. Q.; Meng, J. H.; Pedersen, K.; Gurevich, L.; Stroe, D. I. Understanding the mechanism of capacity increase during early cycling of commercial NMC/graphite lithium-ion batteries. J. Energy Chem. 2022, 74, 34–44.
Fear, C.; Adhikary, T.; Carter, R.; Mistry, A. N.; Love, C. T.; Mukherjee, P. P. In operando detection of the onset and mapping of lithium plating regimes during fast charging of lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 30438–30448.
Kaskhedikar, N. A.; Maier, J. Lithium storage in carbon nanostructures. Adv. Mater. 2009, 21, 2664–2680.
Liu, Y. J.; Ju, Z. J.; Zhang, B. L.; Wang, Y.; Nai, J. W.; Liu, T. F.; Tao, X. Y. Visualizing the sensitive lithium with atomic precision: Cryogenic electron microscopy for batteries. Acc. Chem. Res. 2021, 54, 2088–2099.
Lu, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022, 6, 1172–1198.
Sarkar, A.; Nlebedim, I. C.; Shrotriya, P. Performance degradation due to anodic failure mechanisms in lithium-ion batteries. J. Power Sources 2021, 502, 229145.