AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High temperature polyimide nanocomposites containing two-dimensional nanofillers for improved thermal stability and capacitive energy storage performance

Ding Ai1,§( )Yuting Han1,§Zongliang Xie1,§Xi Pang1Yuan Chang1He Li1Chenglong Wu1Yonghong Cheng1( )Guanglei Wu2( )
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

§ Ding Ai, Yuting Han, and Zongliang Xie contributed equally to this work.

Show Author Information

Graphical Abstract

High-temperature polyimide nanocomposite with alumina nanoplates exhibits remarkable electrical energy storage and discharge capabilities up to 200 °C, outperforming most of the high-temperature polymers. The simultaneously suppressed conduction loss and enhanced thermal dissipation contribute to the superior energy storage performance at elevated temperatures.

Abstract

Future electronic devices toward high integration and miniaturization demand reliable operation of dielectric materials at high electric fields and elevated temperatures. However, the electrical deterioration caused by Joule heat generation remains a persistent challenge to overcome. Here, the solution-processed polyimide (PI) nanocomposites with unique two-dimensional (2D) alumina nanoplates are reported. Substantial improvements in the breakdown strength, charge–discharge efficiency and discharged energy density at elevated temperatures have been demonstrated in the composites, owing to simultaneously suppressed conduction loss and increased thermal conductivity upon the incorporation of 2D Al2O3 nanofillers possessing excellent dielectric insulation and thermophysical properties. The predominance of Al2O3 nanoplates in enhancing thermal stability and high-temperature capacitive performance over nanoparticles and nanowires is validated experimentally and is further rationalized via finite element simulations. Notably, the Al2O3 nanoplates filled PI nanocomposite exhibits a high-temperature capability up to 200 °C and remarkable efficiency (e.g. ≥ 95% at 200 MV/m) over a wide temperature range, which outperforms commercial dielectric polymers and rivals the state-of-the-art polyimide nanocomposites.

Electronic Supplementary Material

Download File(s)
6765_ESM.pdf (3 MB)

References

[1]

Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.

[2]

Pan, S. W.; Ren, J.; Fang, X.; Peng, H. S. Integration: An effective strategy to develop multifunctional energy storage devices. Adv. Energy Mater. 2016, 6, 1501867.

[3]

Li, H.; Zhou, Y.; Liu, Y.; Li, L.; Liu, Y.; Wang, Q. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 2021, 50, 6369–6400.

[4]

Xia, L.; Feng, Y. M.; Zhao, B. Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough. J. Mater. Sci. Technol. 2022, 130, 136–156.

[5]

Luo, H.; Wang, F.; Guo, R.; Zhang, D.; He, G. H.; Chen, S.; Wang, Q. Progress on polymer dielectrics for electrostatic capacitors application. Adv. Sci. 2022, 9, 2202438.

[6]

Bennion, K.; Thornton, M. Integrated vehicle thermal management for advanced vehicle propulsion technologies. SAE Tech. Pap., 2010, 01–0836

[7]

Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S. H.; Zhang, G. Z.; Li, H. U.; Iagodkine, E.; Haque, A.; Chen, L. Q.; Jackson, T. N. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579.

[8]

Watson, J.; Castro, G. A review of high-temperature electronics technology and applications. J. Mater. Sci.: Mater. Electron. 2015, 26, 9226–9235.

[9]

Johnson, R. W.; Evans, J. L.; Jacobsen, P.; Thompson, J. R. R.; Christopher, M. The changing automotive environment: High-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 2004, 27, 164–176.

[10]

Wang, Z. D.; Li, M. L.; Liu, B. T.; Yang, G. Q.; Luo, M.; Zhang, T.; Li, L.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L. Enhanced energy storage characteristics of the epoxy film with rigid phenyl-flexible etherified methylene chains. J. Mater. Sci. Technol. 2024, 183, 12–22.

[11]

Zha, J. W.; Xiao, M. Y.; Wan, B. Q.; Wang, X. M.; Dang, Z. M.; Chen, G. Polymer dielectrics for high-temperature energy storage: Constructing carrier traps. Prog. Mater. Sci. 2023, 140, 101208.

[12]

Yang, X.; Xuan, L. X.; Men, W. W.; Wu, X.; Lan, D.; Shi, Y. P.; Jia, H. X.; Duan, Y. P. Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 2024, 491, 151862.

[13]
Feng, A.; Zhu, X.; Chen, Y.; Liu, P.; Han, F.; Zu, Y.; Li, X.; Bi, P. Functional biomass-derived materials for the development of sustainable batteries. ChemElectroChem, in press, DOI: 10.1002/celc.202400086.
[14]

Ren, L. L.; Li, H.; Xie, Z. L.; Ai, D.; Zhou, Y.; Liu, Y.; Zhang, S. Y.; Yang, L. J.; Zhao, X. T.; Peng, Z. R. et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers. Adv. Energy Mater. 2021, 11, 2101297.

[15]

Zhou, J. X.; Huang, X. M.; Lan, D.; Cheng, Y. H.; Xue, F. Y.; Jia, C. Y.; Wu, G. L.; Jia, Z. R. Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization. Nano Res. 2024, 17, 2050–2060.

[16]

Ho, J. S.; Greenbaum, S. G. Polymer capacitor dielectrics for high temperature applications. ACS Appl. Mater. Interfaces 2018, 10, 29189–29218.

[17]

Zhou, Y.; Zhu, Y. J.; Xu, W. H.; Wang, Q. Molecular trap engineering enables superior high-temperature capacitive energy storage performance in all-organic composite at 200 °C. Adv. Energy Mater. 2023, 13, 2203961.

[18]

Wang, P.; Yao, L. M.; Pan, Z. B.; Shi, S. H.; Yu, J. H.; Zhou, Y.; Liu, Y.; Liu, J. J.; Chi, Q. G.; Zhai, J. W. et al. Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 2021, 33, 2103338.

[19]

Li, H.; Ai, D.; Ren, L. L.; Yao, B.; Han, Z. B.; Shen, Z. H.; Wang, J. J.; Chen, L. Q.; Wang, Q. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 2019, 31, 1900875.

[20]

Wang, Y.; Zhao, L. L.; Chen, R. C.; Zhao, W. H.; Hu, D. W.; Wang, H. R.; Cui, B. Gradient-structure-enhanced dielectric energy storage performance of flexible nanocomposites containing controlled preparation of defective TiO2 and ferroelectric KNbO3 nanosheets. Nano Res. 2024, 17, 4079–4088.

[21]

Feng, Q. K.; Liu, D. F.; Zhang, Y. X.; Pei, J. Y.; Zhong, S. L.; Hu, H. Y.; Wang, X. J.; Dang, Z. M. Significantly improved high-temperature charge–discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano Energy 2022, 99, 107410.

[22]

Li, L. T.; Dong, J. F.; Hu, R. C.; Chen, X. Q.; Niu, Y. J.; Wang, H. Wide-bandgap fluorides/polyimide composites with enhanced energy storage properties at high temperatures. Chem. Eng. J. 2022, 435, 135059.

[23]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[24]

Liu, X. J.; Zheng, M. S.; Chen, G.; Dang, Z. M.; Zha, J. W. High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties. Energy Environ. Sci. 2022, 15, 56–81.

[25]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2T x -(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[26]

Hu, P. H.; Sun, W. D.; Fan, M. Z.; Qian, J. F.; Jiang, J. Y.; Dan, Z. K.; Lin, Y. H.; Nan, C. W.; Li, M.; Shen, Y. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Appl. Surf. Sci. 2018, 458, 743–750.

[27]

Xie, B.; Zhang, L.; Marwat, M. A.; Zhu, Y. W.; Ma, W. G.; Fan, P. Y.; Zhang, H. B. High energy storage performance for dielectric film capacitors by designing 1D SrTiO3@SiO2 nanofillers. J. Adv. Dielectr. 2018, 8, 1850039.

[28]

Zhu, Y. K.; Yao, H.; Jiang, P. K.; Wu, J. D.; Zhu, X.; Huang, X. Y. Two-dimensional high- k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density. J. Phys. Chem. C 2018, 122, 18282–18293.

[29]

Ai, D.; Li, H.; Zhou, Y.; Ren, L. L.; Han, Z. B.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J. M.; Wang, Q. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 2020, 10, 1903881.

[30]

Su, L. Y.; Ma, X. Y.; Zhou, J. L.; Liu, X. C.; Du, F. L.; Teng, C. Large-scale preparation of high-performance boron nitride/aramid nanofiber dielectric composites. Nano Res. 2022, 15, 8648–8655.

[31]
Xie, Z. L.; Le, K.; Li, H.; Pang, X.; Xu, T. L.; Altoé, V.; Klivansky, L. M.; Wang, Y. F.; Huang, Z. Y.; Shelton, S. W. et al. Interfacial engineering using covalent organic frameworks in polymer composites for high-temperature electrostatic energy storage. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202314910.
[32]

Li, H.; Yang, T. N.; Zhou, Y.; Ai, D.; Yao, B.; Liu, Y.; Li, L.; Chen, L. Q.; Wang, Q. Enabling high-energy-density high-efficiency ferroelectric polymer nanocomposites with rationally designed nanofillers. Adv. Funct. Mater. 2021, 31, 2006739.

[33]

Wang, P. J.; Guo, Y.; Zhou, D.; Li, D.; Pang, L. X.; Liu, W. F.; Su, J. Z.; Shi, Z. Q.; Sun, S. K. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 2022, 32, 2204155.

[34]

Shen, Z. H.; Bao, Z. W.; Cheng, X. X.; Li, B. W.; Liu, H. X.; Shen, Y.; Chen, L. Q.; Li, X. G.; Nan C. W. Designing polymer nanocomposites with high energy density using machine learning. npj Comput. Mater. 2021, 7, 110.

[35]

Wang, Z. D.; Zhou, Y. H.; Luo, M.; Zhang, Y. M.; Cao, X. L.; Zhang, Z. Y.; Wang, R.; Zhang, X. F. Superior thermal transport and electrically insulating properties of epoxy composites with waxberry-like calcined alumina/poly diallyldimethylammonium chloride/diamond. Compos. Sci. Technol. 2024, 248, 110440.

[36]

Sun, W. D.; Lu, X. J.; Jiang, J. Y.; Zhang, X.; Hu, P. H.; Li, M.; Lin, Y. H.; Nan, C. W.; Shen, Y. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J. Appl. Phys. 2017, 121, 244101.

[37]

Ho, J.; Jow, T. R. High field conduction in biaxially oriented polypropylene at elevated temperature. IEEE Trans. Dielect. Electr. Insul. 2012, 19, 990–995.

[38]

Chen, J.; Zhou, Y.; Huang, X. Y.; Yu, C. Y.; Han, D. L.; Wang, A.; Zhu, Y. K.; Shi, K. M.; Kang, Q.; Li, P. L. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 2023, 615, 62–66.

[39]

Li, H.; Gadinski, M. R.; Huang, Y. Q.; Ren, L. L.; Zhou, Y.; Ai, D.; Han, Z. B.; Yao, B.; Wang, Q. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency. Energy Environ. Sci. 2020, 13, 1279–1286.

[40]

Ren, L. L.; Yang, L. J.; Zhang, S. Y.; Li, H.; Zhou, Y.; Ai, D.; Xie, Z. L.; Zhao, X. T.; Peng, Z. R.; Liao, R. J. et al. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors. Compos. Sci. Technol. 2021, 201, 108528.

[41]

Wang, Z. D.; Zhang, T.; Hao, M. Y.; Li, M. L.; Zhou, Y. H.; Sun, W. J.; Wang, J. K.; Cheng, Y. H. Novel multifunctional melamine borate-boron nitride nanosheets/epoxy composites with enhanced thermal conductivity, flame retardancy and satisfying electrical insulation. Compos. Part A: Appl. Sci. Manuf. 2023, 169, 107495.

[42]

Li, G. Y.; Zhang, J. H.; Gao, J. X. Study on structure optimization of a dual IGBT module heat sink in a DC-DC converter under natural convection based on field synergy theory. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 1524–1531.

[43]

Ruan, K. P.; Shi, X. T.; Zhang, Y. L.; Guo, Y. Q.; Zhong, X.; Gu, J. W. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem., Int. Ed. 2023, 62, e202309010.

[44]

Liang, C. B.; Zhang, W.; Liu, C. L.; He, J.; Xiang, Y.; Han, M. J.; Tong, Z. W.; Liu, Y. Q. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 2023, 471, 144500.

[45]

Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.

[46]

Ding, X. P.; Pan, Z. B.; Cheng, Y.; Chen, H. X.; Li, Z. C.; Fan, X.; Liu, J. J.; Yu, J. H.; Zhai, J. W. Modulating electron traps of PEI-based nanocomposites for superb capacitive performance over a broad temperature range. Chem. Eng. J. 2023, 453, 139917.

[47]

Pan, C.; Zhang, J. Q.; Kou, K. C.; Zhang, Y.; Wu, G. L. Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transfer 2018, 120, 1–8.

[48]

Ren, J. W.; Jiang, G. Q.; Wang, Z.; Qing, Q.; Teng, F. L.; Jia, Z. R.; Wu, G. L.; Jia, S. L. Highly thermoconductive and mechanically robust boron nitride/aramid composite dielectric films from non-covalent interfacial engineering. Adv. Compos. Hybrid Mater 2024, 7, 5.

[49]

Xie, B.; Zhang, H. B.; Zhang, Q.; Zang, J. D.; Yang, C.; Wang, Q. P.; Li, M. Y.; Jiang, S. L. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. J. Mater. Chem. A 2017, 5, 6070–6078.

[50]

Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 2023, 68, 1938–1953.

[51]
Jia, Z. R.; Liu, J. K.; Gao, Z. G.; Zhang, C. H.; Wu, G. L. Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202405523.
[52]

Xu, W. H.; Liu, J.; Chen, T. W.; Jiang, X. Y.; Qian, X. S.; Zhang, Y.; Jiang, Z. H.; Zhang, Y. H. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 2019, 15, 1901582.

[53]

Zhou, Y.; Li, Q.; Dang, B.; Yang, Y.; Shao, T.; Li, H.; Hu, J.; Zeng, R.; He, J. L.; Wang, Q. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 2018, 30, 1805672.

[54]

Wang, C. W.; Cao, X. D.; Tian, J. Y.; Yu, F.; Jiang, F. Y.; Ren, K. L. Significantly enhanced energy density of nanodiamond/polyimide composites at high temperatures with ultralow nanodiamond contents. Sci. China Technol. Sci. 2023, 66, 956–965.

[55]

Li, J. Y.; Zhang, J. X.; Zhang, S. Z.; Ren, K. L. 2D MoS2 nanosheet-based polyimide nanocomposite with high energy density for high temperature capacitor applications. Macromol. Mater. Eng. 2021, 306, 2100079.

[56]

Ren, S.; Zhao, Y. J.; Pang, L. X.; Wang, X. L.; Zhou, D.; Li, W. B.; Fang, Z. Polyimide nanocomposites filled with SiO2 nanoparticles of different sizes for high-temperature energy storage. ACS Appl. Nano Mater. 2023, 6, 23332–23343.

[57]

Shen, Z. H.; Wang, J. J.; Jiang, J. Y.; Lin, Y. H.; Nan, C. W.; Chen, L. Q.; Shen, Y. Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv. Energy Mater. 2018, 8, 1800509.

[58]

Li, X. D.; Zhu, X.; Feng, A. L.; An, M. M.; Liu, P. T.; Zu, Y. Q. Electrochemical and surface analysis investigation of corrosion inhibition performance: 6-Thioguanine, benzotriazole, and phosphate salt on simulated patinas of bronze relics. J. Mater. Res. Technol. 2024, 29, 5667–5680.

[59]

He, Y. F.; Su, Q.; Liu, D. D.; Xia, L.; Huang, X. X.; Lan, D.; Liu, Y. N.; Huang, Y. D.; Zhong, B. Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 2024, 491, 152041.

[60]
He, M. K.; Hu, J. W.; Yan, H.; Zhong, X.; Zhang, Y. L.; Liu, P. B.; Kong, J.; Gu, J. W. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316691.
Nano Research
Pages 7746-7755
Cite this article:
Ai D, Han Y, Xie Z, et al. High temperature polyimide nanocomposites containing two-dimensional nanofillers for improved thermal stability and capacitive energy storage performance. Nano Research, 2024, 17(8): 7746-7755. https://doi.org/10.1007/s12274-024-6765-4
Topics:

457

Views

2

Crossref

2

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 29 February 2024
Revised: 02 May 2024
Accepted: 06 May 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return