AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Yolk–shell FeCu/NC electrocatalyst boosting high-performance zinc-air battery

Chen Liang1Tianyu Zhang1Shilun Sun1Aijuan Han1Zenghui Qiu2,3( )Haijun Xu2,3( )Junfeng Liu1( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

By combining the advantages of Fe single-atom/Cu cluster complex sites with the yolk–shell structure, the yolk–shell FeCu/NC demonstrates exceptionally high half-wave potential and outstanding zinc-air battery performance.

Abstract

Iron–nitrogen–carbon single-atom catalysts (Fe–N–C SACs) are widely acknowledged for their effective oxygen reduction activity, however, their activity requires further enhancement. Meanwhile, additional structural optimization is necessary to enhance mass transport and achieve higher power density in practical applications. Herein, using ZIF-8 as a template, we synthesized yolk–shell catalysts featuring complex sites of Fe single atoms and Cu nanoclusters (y-FeCu/NC) via partial etching and liquid-phase loading. The synthesized y-FeCu/NC catalyst exhibits high specific surface area and mesoporous volume. Combined with the advantages of highly active sites and yolk–shell structure, the y-FeCu/NC catalyst demonstrated outstanding catalytic performance in the oxygen reduction reaction, achieving a half-wave potential (E1/2) of 0.97 V in 0.1 M KOH. As a practical energy device, Zn-air battery (ZAB) assembled with y-FeCu/NC catalyst achieved a remarkable power density of 356.3 mW·cm–2, representing an improvement of approximately 28.5% compared to its solid FeCu/NC counterpart. Furthermore, it showcased impressive stability, surpassing all control samples.

Electronic Supplementary Material

Download File(s)
6766_ESM.pdf (5.4 MB)

References

[1]

Lin, J.; Zhang, X. D.; Fan, E. S.; Chen, R. J.; Wu, F.; Li, L. Carbon neutrality strategies for sustainable batteries: From structure, recycling, and properties to applications. Energy Environ. Sci. 2023, 16, 745–791.

[2]

Wang, S.; Chu, Y. Y.; Lan, C.; Liu, C. P.; Ge, J. J.; Xing, W. Metal-nitrogen-carbon catalysts towards acidic ORR in PEMFC: Fundamentals, durability challenges, and improvement strategies. Chem. Synth. 2023, 3, 15.

[3]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3– x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[4]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the Volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[5]

Guo, Y. Y.; Cao, Y. H.; Lu, J. D.; Zheng, X. R.; Deng, Y. D. The concept, structure, and progress of seawater metal-air batteries. Microstructures 2023, 3, 2023038.

[6]

Wang, Q. C.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.

[7]

Xiao, X.; Zhao, H.; Li, L. F.; Qu, B. L.; Wu, Y. L.; Zhu, Y. L.; Chen, B. B.; Pan, G. Ion exchange coupled biomineral self-sacrificial template synthesis of N-enriched porous carbon as robust electrocatalyst for rechargeable Zn-air battery. Rare Met. 2023, 42, 1186–1194.

[8]

Li, L.; Li, N.; Xia, J. W.; Xing, H. R.; Arif, M.; Zhao, Y. T.; He, G. Y.; Chen, H. Q. Post-synthetic electrostatic adsorption-assisted fabrication of efficient single-atom Fe-N-C oxygen reduction catalysts for Zn-air batteries. Sci. China Mater. 2023, 66, 992–1001.

[9]

Wang, T. T.; Huang, J. C.; Sang, W.; Zhou, C.; Zhang, B. H.; Zhu, W.; Du, K.; Kou, Z. K.; Wang, S. X. Correlative Mn-Co catalyst excels Pt in oxygen reduction reaction of quasi-solid-state zinc-air batteries. Nano Res. 2024, 17, 4118–4124.

[10]

Xiao, F.; Wang, Q.; Xu, G. L.; Qin, X. P.; Hwang, I.; Sun, C. J.; Liu, M.; Hua, W.; Wu, H. W.; Zhu, S. Q. et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 503–512.

[11]

Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

[12]

Wang, Y.; Wang, L.; Fu, H. G. Research progress of Fe-N-C catalysts for the electrocatalytic oxygen reduction reaction. Sci. China Mater. 2022, 65, 1701–1722.

[13]
Zhao, Y. L.; Tian, Z. B.; Wang, W. Q.; Deng, X. H.; Tseng, J. C.; Wang, G. H. Size-dependent activity of Fe-N-doped mesoporous carbon nanoparticles towards oxygen reduction reaction. Green Carbon, in press, DOI: 10.1016/j.greenca.2024.03.002.
[14]

Shi, Q. R.; Hwang, S.; Yang, H. P.; Ismail, F.; Su, D.; Higgins, D.; Wu, G. Supported and coordinated single metal site electrocatalysts. Mater. Today 2020, 37, 93–111.

[15]

Shu, X. X.; Tan, D. X.; Wang, Y. Q.; Ma, J. Z.; Zhang, J. T. Bimetal-bridging nitrogen coordination in carbon-based electrocatalysts for pH‐universal oxygen reduction. Angew. Chem., Int. Ed. 2024, 136, e202316005.

[16]

Zhao, J. Y.; Li, P.; Fan, K. C.; Wei, W. J.; Lu, F. H.; Zhao, H. M.; Li, B.; Zong, L. B.; Wang, L. Spatial confinement of zeolitic imidazolate framework deposits by porous carbon nanospheres for dual-atom catalyst towards high-performance oxygen reduction reaction. Nano Res. 2023, 16, 11464–11472.

[17]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[18]

Wu, Y. J.; Wu, X. H.; Tu, T. X.; Zhang, P. F.; Li, J. T.; Zhou, Y.; Huang, L.; Sun, S. G. Controlled synthesis of FeN x -CoN x dual active sites interfaced with metallic Co nanoparticles as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2020, 278, 119259.

[19]

Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

[20]

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

[21]

Yang, J.; Wang, Z. Y.; Huang, C. X.; Zhang, Y. D.; Zhang, Q. H.; Chen, C.; Du, J. Y.; Zhou, X.; Zhang, Y.; Zhou, H. et al. Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 22722–22728.

[22]

Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.

[23]

Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.

[24]

Zhang, K. X.; Zhang, Y. L.; Zhang, Q. H.; Liang, Z. B.; Gu, L.; Guo, W. H.; Zhu, B. J.; Guo, S. J.; Zou, R. Q. Metal-organic framework-derived Fe/Cu-substituted Co nanoparticles embedded in CNTs-grafted carbon polyhedron for Zn-air batteries. Carbon Energy 2020, 2, 283–293.

[25]

Zhang, T. Y.; Han, X.; Yang, H. B.; Han, A. J.; Hu, E. Y.; Li, Y. P.; Yang, X. Q.; Wang, L.; Liu, J. F.; Liu, B. Atomically dispersed nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 12055–12061.

[26]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[27]

Liang, C.; Han, X.; Zhang, T. Y.; Dong, B.; Li, Y. P.; Zhuang, Z. B.; Han, A. J.; Liu, J. F. Cu nanoclusters accelerate the rate-determining step of oxygen reduction on Fe-N-C in all pH range. Adv. Energy Mater. 2024, 14, 2303935.

[28]

Lu, X. Y.; Xu, H.; Yang, P. X.; Xiao, L. H.; Li, Y. Q.; Ma, J. Y.; Li, R. P.; Liu, L. L.; Liu, A. M.; Kondratiev, V. et al. Zinc-assisted MgO template synthesis of porous carbon-supported Fe-N x sites for efficient oxygen reduction reaction catalysis in Zn-air batteries. Appl. Catal. B Environ. 2022, 313, 121454.

[29]

Zhang, P.; Chen, H. C.; Zhu, H. Y.; Chen, K.; Li, T. Y.; Zhao, Y. L.; Li, J. Y.; Hu, R. B.; Huang, S. Y.; Zhu, W. et al. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat. Commun. 2024, 15, 2062.

[30]

Jiang, Z.; Liu, X. R.; Liu, X. Z.; Huang, S.; Liu, Y.; Yao, Z. C.; Zhang, Y.; Zhang, Q. H.; Gu, L.; Zheng, L. R. et al. Interfacial assembly of binary atomic metal-N x sites for high-performance energy devices. Nat. Commun. 2023, 14, 1822.

[31]

Adabi, H.; Shakouri, A.; Ul Hassan, N.; Varcoe, J. R.; Zulevi, B.; Serov, A.; Regalbuto, J. R.; Mustain, W. E. High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 2021, 6, 834–843.

[32]

Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

[33]

Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J. W.; Caruso, F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 2016, 26, 5827–5834.

[34]

Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

[35]

Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; Van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157.

[36]

Li, J. C.; Xiao, F.; Zhong, H.; Li, T.; Xu, M. J.; Ma, L.; Cheng, M.; Liu, D.; Feng, S.; Shi, Q. R. et al. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction. ACS Catal. 2019, 9, 5929–5934.

[37]

Rahman, M. M.; Muttakin, M.; Pal, A.; Shafiullah, A. Z.; Saha, B. B. A statistical approach to determine optimal models for IUPAC-classified adsorption isotherms. Energies 2019, 12, 4565.

[38]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[39]

Zhong, G. Y.; Xu, S. R.; Liu, L.; Zheng, C. Z.; Dou, J. J.; Wang, F. Y.; Fu, X. B.; Liao, W. B.; Wang, H. J. Effect of experimental operations on the limiting current density of oxygen reduction reaction evaluated by rotating-disk electrode. ChemElectroChem 2020, 7, 1107–1114.

[40]

Ku, Y. P.; Ehelebe, K.; Hutzler, A.; Bierling, M.; Böhm, T.; Zitolo, A.; Vorokhta, M.; Bibent, N.; Speck, F. D.; Seeberger, D. et al. Oxygen reduction reaction in alkaline media causes iron leaching from Fe-N-C electrocatalysts. J. Am. Chem. Soc. 2022, 144, 9753–9763.

[41]

Zhang, T. Y.; Wang, F. P.; Yang, C.; Han, X.; Liang, C.; Zhang, Z. D.; Li, Y. P.; Han, A. J.; Liu, J. F.; Liu, B. Boosting ORR performance by single atomic divacancy Zn-N3C-C8 sites on ultrathin N-doped carbon nanosheets. Chem Catal. 2022, 2, 836–852.

[42]

Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-N x active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.

Nano Research
Pages 7918-7925
Cite this article:
Liang C, Zhang T, Sun S, et al. Yolk–shell FeCu/NC electrocatalyst boosting high-performance zinc-air battery. Nano Research, 2024, 17(9): 7918-7925. https://doi.org/10.1007/s12274-024-6766-3
Topics:

405

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 April 2024
Revised: 11 May 2024
Accepted: 14 May 2024
Published: 01 July 2024
© Tsinghua University Press 2024
Return