Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Circulating microRNAs (miRNAs) play a pivotal role in the occurrence and development of acute myocardial infarction (AMI), and precise detection of them holds significant clinical implications. The development of luminol-based luminophores in the field of electrochemiluminescence (ECL) for miRNA detection has been significant, while their effectiveness is hindered by the instability of co-reactant hydrogen peroxide (H2O2). In this work, an iron single-atom catalyst (Fe-PNC) was employed for catalyzing the luminol-O2 ECL system to achieve ultra-sensitive detection of myocardial miRNA. Target miRNA triggers a hybridization chain reaction (HCR), resulting in the generation of a DNA product featuring multiple sticky ends that facilitate the attachment of Fe-PNC probes to the electrode surface. The Fe-PNC catalyst exhibits high promise and efficiency for the oxygen reduction reaction (ORR) in electrochemical energy conversion systems. The resulting ECL biosensor allowed ultrasensitive detection of myocardial miRNA with a low detection limit of 0.42 fM and a wide linear range from 1 fM to 1.0 nM. Additionally, it demonstrates exceptional performance when evaluated using serum samples collected from patients with AMI. This work expands the application of single-atom catalysis in ECL sensing and introduces novel perspectives for utilizing ECL in disease diagnosis.
Tirdea, C.; Hostiuc, S.; Moldovan, H.; Scafa-Udriste, A. Identification of risk genes associated with myocardial infarction-big data analysis and literature review. Int. J. Mol. Sci. 2022, 23, 15008.
Chang, L. L.; Wang, Z. J.; Ma, F. F.; Tran, B.; Zhong, R.; Xiong, Y.; Dai, T.; Wu, J.; Xin, X. M.; Guo, W. et al. ZYZ-803 mitigates endoplasmic reticulum stress-related necroptosis after acute myocardial infarction through downregulating the RIP3-CaMKII signaling pathway. Oxid. Med. Cell. Longev. 2019, 2019, 6173685.
Chen, C.; Ponnusamy, M.; Liu, C. Y.; Gao, J. N.; Wang, K.; Li, P. F. MicroRNA as a therapeutic target in cardiac remodeling. Biomed Res. Int. 2017, 2017, 1278436.
Zhang, L.; Zhang, Y.; Zhao, Y. F.; Wang, Y.; Ding, H.; Xue, S.; Li, P. F. Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. Expert Opin. Ther. Pat. 2018, 28, 591–601.
Zhang, X.; Tian, L.; Sun, Z.; Wu, Q.; Shan, X. Y.; Zhao, Y. J.; Chen, R. Z.; Lu, J. A molecule-imprinted electrochemiluminescence sensor based on self-accelerated Ru(bpy)32+@ZIF-7 for ultra-sensitive detection of procymidone. Food Chem. 2022, 391, 133235.
Liu, S. S.; Yuan, H. X.; Bai, H. T.; Zhang, P. B.; Lv, F. T.; Liu, L. B.; Dai, Z. H.; Bao, J. C.; Wang, S. Electrochemiluminescence for electric-driven antibacterial therapeutics. J. Am. Chem. Soc. 2018, 140, 2284–2291.
Xiang, H.; He, S. Y.; Zhao, G.; Zhang, M. T.; Lin, J.; Yang, L. N.; Liu, H. L. Gold nanocluster-based ratiometric probe with surface structure regulation-triggered sensing of hydrogen sulfide in living organisms. ACS Appl. Mater. Interfaces 2023, 15, 12643–12652.
Zhong, W. Y.; Liang, Z. H.; Zhao, H.; Wang, P. L.; Li, Z. R.; Shi, J. W.; Ma, Q. ECL resonance energy transfer-regulated “off-on” mode biosensor for the detection of miRNA-150-5p in triple negative breast cancer. Biosens. Bioelectron. 2023, 240, 115663.
Gu, W. L.; Wang, X. S.; Wen, J.; Cao, S. Y.; Jiao, L.; Wu, Y.; Wei, X. Q.; Zheng, L. R.; Hu, L. Y.; Zhang, L. Z. et al. Modulating oxygen reduction behaviors on nickel single-atom catalysts to probe the electrochemiluminescence mechanism at the atomic level. Anal. Chem. 2021, 93, 8663–8670.
Gu, W. L.; Wang, H. J.; Jiao, L.; Wu, Y.; Chen, Y. X.; Hu, L. Y.; Gong, J. M.; Du, D.; Zhu, C. Z. Single-atom iron boosts electrochemiluminescence. Angew. Chem., Int. Ed. 2020, 59, 3534–3538.
Nie, Y. X.; Wang, P. L.; Ma, Q.; Su, X. G. Confined gold single atoms-MXene heterostructure-based electrochemiluminescence functional material and its sensing application. Anal. Chem. 2022, 94, 11016–11022.
Yang, L.; Jia, Y.; Wu, D.; Zhang, Y.; Ju, H. X.; Du, Y.; Ma, H. M.; Wei, Q. Synthesis and application of CeO2/SnS2 heterostructures as a highly efficient coreaction accelerator in the luminol-dissolved O2 system for ultrasensitive biomarkers immunoassay. Anal. Chem. 2019, 91, 14066–14073.
Jiao, L.; Xu, W. Q.; Wu, Y.; Yan, H. Y.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 2021, 50, 750–765.
Wang, M. Y.; Ye, M. F.; Wang, J. Y.; Xu, Y.; Wang, Z. D.; Tong, X. Y.; Han, X. Y.; Zhang, K.; Wang, W. H.; Wu, K. L. et al. Recent advances and applications of single atom catalysts based electrochemical sensors. Nano Res. 2024, 17, 2994–3013.
Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical Synthesis of Single Atomic Site Catalysts. Chem. Rev. 2020, 120, 11900–11955.
Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.
Ma, Y. C.; Zhang, Y.; Gao, J. Q.; Ouyang, H.; He, Y.; Fu, Z. F. PEGylated Ni single-atom catalysts as ultrasensitive electrochemiluminescent probes with favorable aqueous dispersibility for assaying drug-resistant pathogens. Anal. Chem. 2022, 94, 14047–14053.
Xu, W. Q.; Wu, Y.; Wang, X. S.; Qin, Y.; Wang, H. J.; Luo, Z.; Wen, J.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. Bioinspired single-atom sites enable efficient oxygen activation for switching anodic/cathodic electrochemiluminescence. Angew. Chem., Int. Ed. 2023, 62, e202304625.
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.
Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.
Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.
Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.
Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.
Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-Air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.
Bushira, F. A.; Wang, P.; Wang, Y.; Hou, S. P.; Diao, X. K.; Li, H. J.; Zheng, L. R.; Jin, Y. D. Plasmon-boosted Fe, Co dual single-atom catalysts for ultrasensitive luminol-dissolved O2 electrochemiluminescence detection of prostate-specific antigen. Anal. Chem. 2022, 94, 9758–9765.
Chen, T. T.; Zhou, D. D.; Hou, S. H.; Li, Y.; Liu, Y.; Zhang, M. L.; Zhang, G. B.; Xu, H. Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 2022, 94, 15270–15279.
Zou, R.; Xie, R. Y.; Peng, Y. G.; Guan, W. J.; Lin, Y. J.; Lu, C. Ag-O-Co interface modulation-amplified luminol cathodic electrogenerated chemiluminescence. Anal. Chem. 2022, 94, 4813–4820.
Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.
Liu, C.; Huang, X. D.; Wang, J.; Song, H.; Yang, Y. N.; Liu, Y.; Li, J. S.; Wang, L. J.; Yu, C. Z. Hollow mesoporous carbon nanocubes: Rigid-interface-induced outward contraction of metal-organic frameworks. Adv. Funct. Mater. 2018, 28, 1705253.
Wang, C. H.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J. S.; Yamauchi, Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020, 6, 19–40.
Xiong, C.; Tian, L.; Xiao, C. C.; Xue, Z. G.; Zhou, F. Y.; Zhou, H.; Zhao, Y. F.; Chen, M.; Wang, Q. P.; Qu, Y. T. et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020, 65, 2100–2106.
Zou, Z.; Shi, Z. Z.; Wu, J. G.; Wu, C.; Zeng, Q. X.; Zhang, Y. Y.; Zhou, G. D.; Wu, X. S.; Li, J.; Chen, H. et al. Atomically dispersed Co to an end-adsorbing molecule for excellent biomimetically and prime sensitively detecting O2·- released from living cells. Anal. Chem. 2021, 93, 10789–10797.
Hu, G. X.; Rao, Q. H.; Li, G.; Zheng, Y.; Liu, Y. H.; Guo, C. X.; Li, F. H.; Hu, F. X.; Yang, H. B.; Chen, F. A single-atom cobalt integrated flexible sensor for simultaneous detection of dihydroxybenzene isomers. Nanoscale 2023, 15, 9484–9495.
Leonard, N.; Ju, W.; Sinev, I.; Steinberg, J.; Luo, F.; Varela, A. S.; Roldan Cuenya, B.; Strasser, P. The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe-nitrogen-carbon (Fe-N-C) materials. Chem. Sci. 2018, 9, 5064–5073.
Wang, Q. P.; Liu, T. Y.; Chen, K.; Wu, D.; Chen, C.; Chen, M.; Ma, X. H.; Xu, J.; Yao, T.; Li, Y. F. et al. Precise regulation of iron spin states in single Fe-N4 sites for efficient peroxidase-mimicking catalysis. Small 2022, 18, 2204015.
Liang, Y.; Zhao, P.; Zheng, J. L.; Chen, Y. Y.; Liu, Y. Y.; Zheng, J.; Luo, X. G.; Huo, D. Q.; Hou, C. J. Fe single-atom electrochemical sensors for H2O2 produced by living cells. ACS Appl. Nano Mater. 2022, 5, 11852–11863.
Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.
Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. et al. Single-atom Fe catalysts for fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.
Shi, L. L.; Peng, P.; Du, Y.; Li, T. Programmable i-motif DNA folding topology for a pH-switched reversible molecular sensing device. Nucleic Acids Res. 2017, 45, 4306–4314.
Hu, W. X.; Chang, Y. Y.; Huang, J. Q.; Chai, Y. Q.; Yuan, R. Tetrahedral DNA nanostructure with multiple target-recognition domains for ultrasensitive electrochemical detection of mucin 1. Anal. Chem. 2022, 94, 6860–6865.
Yao, T.; Kong, L. Q.; Liu, Y.; Li, H.; Yuan, R.; Chai, Y. Q. Highly efficient quadruped DNA walker guided by ordered DNA tracks for rapid and ultrasensitive electrochemical detection of miRNA-21. Anal. Chem. 2022, 94, 12256–12262.
Xia, H. Y.; Zheng, X. L.; Li, J.; Wang, L. G.; Xue, Y.; Peng, C.; Han, Y. C.; Wang, Y.; Guo, S. J.; Wang, J. et al. Identifying luminol electrochemiluminescence at the cathode via single-atom catalysts tuned oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 7741–7749.
Wang, Y. F.; Guo, W. L.; Yang, Q.; Su, B. Electrochemiluminescence self-interference spectroscopy with vertical nanoscale resolution. J. Am. Chem. Soc. 2020, 142, 1222–1226.
Wei, X. Q.; Song, S. J.; Song, W. Y.; Xu, W. Q.; Jiao, L.; Luo, X.; Wu, N. N.; Yan, H. Y.; Wang, X. S.; Gu, W. L. et al. Fe3C-assisted single atomic Fe sites for sensitive electrochemical biosensing. Anal. Chem. 2021, 93, 5334–5342