AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

New strategy for boosting cathodic performance of low temperature solid oxide fuel cells via chlorine doping

ShaoHua Xu1,§Hao Qiu1,§Shanshan Jiang1( )Jingjing Jiang2( )Wei Wang3Xiaomin Xu4Wei Kong1Tanaka Dennis Chivurugwi1Arkadii Proskurin5Daifen Chen1Chao Su1( )
School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
Admiral Makarov National University of Shipbuilding, Heroiv Ukrainy av. 9, Mykolaiv, 54025, Ukraine

§ ShaoHua Xu and Hao Qiu contributed equally to this work.

Show Author Information

Graphical Abstract

An innovative scheme is proposed to improve the oxygen reduction reaction (ORR) activity and durability of the cathode for low-temperature solid oxide fuel cells (LT-SOFCs). By partially replacing the oxygen sites of the cobalt-free perovskite oxide with chlorine anions, we achieved a SrTa0.1Fe0.9O2.95−δCl0.05 (STFCl0.05) cathode with superior CO2 tolerance, profound electrochemical performance, and outstanding durability.

Abstract

To enhance the performance and widespread use of solid oxide fuel cells (SOFCs), addressing the low-temperature (< 650 °C) electrochemical performance and operational stability issues of cathode materials is crucial. Here, we propose an innovative approach to enhance oxygen ion mobility and electrochemical performance of perovskite oxide by substituting some oxygen sites with chlorine anions. The designed SrTa0.1Fe0.9O3−δxClx (x = 0.05 and 0.10) exhibits improved performance compared to SrTa0.1Fe0.9O3−δ (STF). SrTa0.1Fe0.9O2.95−δCl0.05 (STFCl0.05) shows the lowest area-specific resistance (ASR) value on Sm0.2Ce0.8O1.9 (SDC) electrolyte. At 600 °C, STFCl0.05 achieves an ASR value of 0.084 Ω·cm2, and a single cell with STFCl0.05 reaches a higher peak power density (PPD) value (1143 mW·cm−2) than that with STF (672 mW·cm−2). Additionally, besides exhibiting excellent oxygen reduction reaction (ORR) activity at lower temperatures, the STFCl0.05 cathode demonstrates good CO2 tolerance and operational stability. Symmetrical cell operation lasts for 150 h, and single cell operation endures for 720 h without significant performance decline. The chlorine doping approach effectively enhances ORR activity and stability, making STFCl0.05 a promising cathode material for low-temperature SOFCs.

Electronic Supplementary Material

Download File(s)
6768_ESM.pdf (1.4 MB)

References

[1]

Yang, G. M.; Su, C.; Shi, H. G.; Zhu, Y. L.; Song, Y. F.; Zhou, W.; Shao, Z. P. Toward reducing the operation temperature of solid oxide fuel cells: Our past 15 years of efforts in cathode development. Energy Fuels 2020, 34, 15169–15194.

[2]

Zhang, W. L.; Zhou, Y. C.; Liu, E. Z.; Ding, Y.; Luo, Z. Y.; Li, T. T.; Kane, N.; Zhao, B. T.; Niu, Y. H.; Liu, Y. et al. A highly efficient and durable air electrode for intermediate-temperature reversible solid oxide cells. Appl. Catal. B Environ. 2021, 299, 120631.

[3]

Cao, J. F.; Ji, Y. X.; Shao, Z. P. Perovskites for protonic ceramic fuel cells: A review. Energy Environ. Sci. 2022, 15, 2200–2232.

[4]

Zhang, K.; Zhang, D.; Wang, Y.; Li, Y. H.; Ren, C.; Ding, M. Y.; Liu, T. Promoting catalysis activity with optimizable self-generated Co–Fe alloy nanoparticles for efficient CO2 electrolysis performance upgrade. Nano Res. 2023, 16, 10992–10999.

[5]

Ma, Y. M.; Zhang, L. J.; Zhu, K.; Zhang, B. Z.; Peng, R. R.; Xia, C. R.; Huang, L. In3+-doped Sr2Fe1.5Mo0.5O6− δ cathode with improved performance for an intermediate-temperature solid oxide fuel cell. Nano Res. 2023, 17, 407–415.

[6]

Carneiro, J.; Nikolla, E. Nanoengineering of solid oxide electrochemical cell technologies: An outlook. Nano Res. 2019, 12, 2081–2092.

[7]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[8]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe–N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem. 2023, 135, e202303185.

[9]

Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.

[10]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[11]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p n junction rectification. Angew. Chem. 2023, 135, e202212335.

[12]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. 2022, 134, e202213318.

[13]

Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, 2308653.

[14]

Xu, K.; Zhu, F.; Hou, M. Y.; Li, C. A.; Zhang, H.; Chen, Y. Activating and stabilizing the surface of anode for high-performing direct-ammonia solid oxide fuel cells. Nano Res. 2023, 16, 2454–2462.

[15]

Yu, J.; Li, Z.; Liu, T.; Zhao, S. Y.; Guan, D. Q.; Chen, D. F.; Shao, Z. P.; Ni, M. Morphology control and electronic tailoring of Co x A y (A = P, S, Se) electrocatalysts for water splitting. Chem. Eng. J. 2023, 460, 141674.

[16]

Pan, J. X.; Ye, Y. J.; Zhou, M. Z.; Sun, X.; Ling, Y. H.; Yashiro, K.; Chen, Y. Improving the activity and stability of Ni-based electrodes for solid oxide cells through surface engineering: Recent progress and future perspectives. Mater. Rep. Energy 2021, 1, 100025.

[17]

Wang, M.; Su, C.; Zhu, Z. H.; Wang, H.; Ge, L. Composite cathodes for protonic ceramic fuel cells: Rationales and materials. Compos. Part B Eng. 2022, 238, 109881.

[18]

Qiu, H.; Jiang, S. S.; Niu, Y. J.; Zhang, Q.; Pang, Y. P.; Su, C. Thickness-dependent high-performance solid oxide fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3− δ cathode. Asia-Pac. J. Chem. Eng. 2022, 17, e2769.

[19]

Gu, H. X.; Xu, M. G.; Song, Y. F.; Zhou, C.; Su, C.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. P. SrCo0.8Ti0.1Ta0.1O3− δ perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells. Compos. Part B Eng. 2021, 213, 108726.

[20]

Zhou, W.; Sunarso, J.; Zhao, M. W.; Liang, F. L.; Klande, T.; Feldhoff, A. A highly active perovskite electrode for the oxygen reduction reaction below 600 °C. Angew. Chem. 2013, 125, 14286–14290.

[21]

Moholkar, A. V.; Pawar, S. M.; Rajpure, K. Y.; Bhosale, C. H.; Kim, J. H. Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films. Appl. Surf. Sci. 2009, 255, 9358–9364.

[22]

Liu, H. F.; Wei, Y. Y.; Huang, L.; Wang, H. H. Chlorine-doped Ba0.5Sr0.5Co0.8Fe0.2O3− δ as an oxygen-permeable membrane at intermediate temperature. Funct. Mater. Lett. 2011, 4, 261–264.

[23]

Li, Y. H.; Li, Y.; Wan, Y. H.; Xie, Y.; Zhu, J. F.; Pan, H. B.; Zheng, X. S.; Xia, C. R. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances. Adv. Energy Mater. 2019, 9, 1803156.

[24]

Konishcheva, M. V.; Potemkin, D. I.; Snytnikov, P. V.; Stonkus, O. A.; Belyaev, V. D.; Sobyanin, V. A. The insights into chlorine doping effect on performance of ceria supported nickel catalysts for selective CO methanation. Appl. Catal. B Environ. 2018, 221, 413–421.

[25]

Dogu, D.; Meyer, K. E.; Fuller, A.; Gunduz, S.; Deka, D. J.; Kramer, N.; Co, A. C.; Ozkan, U. S. Effect of lanthanum and chlorine doping on strontium titanates for the electrocatalytically-assisted oxidative dehydrogenation of ethane. Appl. Catal. B Environ. 2018, 227, 90–101.

[26]

Liu, Y. G.; Ma, J. X.; Dai, L.; Meng, W. W.; Wang, L. Improvement of the response performance of impedimetric NO2 sensor by halogen doping of La0.75Sr0.25CrO3− δ sensing electrode. Sens. Actuators B Chem. 2022, 358, 131516.

[27]

Moon, E. J.; Xie, Y. J.; Laird, E. D.; Keavney, D. J.; Li, C. Y.; May, S. J. Fluorination of epitaxial oxides: Synthesis of perovskite oxyfluoride thin films. J. Am. Chem. Soc. 2014, 136, 2224–2227.

[28]

Zhu, J. W.; Liu, G. P.; Liu, Z. K.; Chu, Z. Y.; Jin, W. Q.; Xu, N. P. Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation. Adv. Mater. 2016, 28, 3511–3515.

[29]

Xue, J.; Li, J. Q.; Zhuang, L. B.; Chen, L.; Feldhoff, A.; Wang, H. H. Anion doping CO2-stable oxygen permeable membranes for syngas production. Chem. Eng. J. 2018, 347, 84–90.

[30]

Zhu, Y. L.; Lin, Q.; Wang, Z. B.; Qi, D. C.; Yin, Y. C.; Liu, Y.; Zhang, X. W.; Shao, Z. P.; Wang, H. T. Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution. J. Energy Chem. 2021, 52, 115–120.

[31]

Shin, Y.; Doh, K. Y.; Kim, S. H.; Lee, J. H.; Bae, H.; Song, S. J.; Lee, D. Effect of oxygen vacancies on electrical conductivity of La0.5Sr0.5FeO3− δ from first-principles calculations. J. Mater. Chem. A 2020, 8, 4784–4789.

[32]
Jiang, S. S.; Qiu, H.; Xu, S. H.; Xu, X. M.; Jiang, J. J.; Xiao, B. B.; Julião, P. S. B.; Su, C.; Chen, D. F.; Zhou, W. Investigation and optimization of high-valent Ta-doped SrFeO3− δ as air electrode for intermediate-temperature solid oxide fuel cells. Int. J. Miner. Metall. Mater., in press. DOI: 10.1007/s12613-024-2872-1.
[33]

Huang, Q.; Jiang, S. S.; Wang, Y. J.; Jiang, J. J.; Chen, Y. B.; Xu, J. H.; Qiu, H.; Su, C.; Chen, D. F. Highly active and durable triple conducting composite air electrode for low-temperature protonic ceramic fuel cells. Nano Res. 2023, 16, 9280–9288.

[34]

Su, C.; Wang, W.; Shao, Z. P. Cation-deficient perovskites for clean energy conversion. Acc. Mater. Res. 2021, 2, 477–488.

[35]

Gu, H. X.; Sunarso, J.; Yang, G. M.; Zhou, C.; Song, Y. F.; Zhang, Y.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. P. Turning detrimental effect into benefits: Enhanced oxygen reduction reaction activity of cobalt-free perovskites at intermediate temperature via CO2-induced surface activation. ACS Appl. Mater. Interfaces. 2020, 12, 16417–16425.

[36]

Xia, W. W.; Li, Q.; Sun, L. P.; Huo, L. H.; Zhao, H. Enhanced electrochemical performance and CO2 tolerance of Ba0.95La0.05Fe0.85Cu0.15O3− δ as Fe-based cathode electrocatalyst for solid oxide fuel cells. J. Eur. Ceram. Soc. 2020, 40, 1967–1974.

[37]

Song, Y. F.; Chen, Y. B.; Xu, M. G.; Wang, W.; Zhang, Y.; Yang, G. M.; Ran, R.; Zhou, W.; Shao, Z. P. A cobalt-free multi-phase nanocomposite as near-ideal cathode of intermediate-temperature solid oxide fuel cells developed by smart self-assembly. Adv. Mater. 2020, 32, 1906979.

[38]

Zou, D.; Yi, Y. N.; Song, Y. F.; Guan, D. Q.; Xu, M. G.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. The BaCe0.16Y0.04Fe0.8O3− δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390.

[39]

Zhang, Z. B.; Zhu, Y. L.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Anion doping: A new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv. Energy Mater. 2017, 7, 1700242.

[40]

Zhang, Z. B.; Chen, D. J.; Wang, J.; Tan, S. Z.; Yu, X.; Shao, Z. P. Highly active and stable cobalt-free hafnium-doped SrFe0.9Hf0.1O3− δ perovskite cathode for solid oxide fuel cells. ACS Appl. Energy Mater. 2018, 1, 2134–2142.

[41]

Beshiwork, B. A.; Wan, X. Y.; Xu, M.; Guo, H. R.; Teketel, B. S.; Chen, Y.; Chen, J. S.; Li, T. S.; Traversa, E. A defective iron-based perovskite cathode for high-performance IT-SOFCs: Tailoring the oxygen vacancies using Nb/Ta co-doping. J. Energy Chem. 2024, 88, 306–316.

[42]

Bai, J. H.; Zhou, D. F.; Zhu, X. F.; Wang, N.; Liang, Q. W.; Chen, R. Y.; Lu, H. Y.; Li, J. M.; Yan, W. F. Bi0.5Sr0.5FeO3− δ perovskite B-site doped Ln (Nd, Sm) as cathode for high performance Co-free intermediate temperature solid oxide fuel cell. Ceram. Int. 2023, 49, 28682–28692.

[43]

Gou, Y. J.; Li, G. D.; Ren, R. Z.; Xu, C. M.; Qiao, J. S.; Sun, W.; Sun, K. N.; Wang, Z. H. Pr-doping motivating the phase transformation of the BaFeO3− δ perovskite as a high-performance solid oxide fuel cell cathode. ACS Appl. Mater. Interfaces 2021, 13, 20174–20184.

[44]

Liang, M. Z.; He, F.; Zhou, C.; Chen, Y. B.; Ran, R.; Yang, G. M.; Zhou, W.; Shao, Z. P. Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3− δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells. Chem. Eng. J. 2021, 420, 127717.

[45]

Ma, Z. L.; Ye, Q. R.; Zhang, B. K.; Yang, W. Y.; Dong, F. F.; Ni, M.; Lin, Z. A highly efficient and robust bifunctional perovskite-type air electrode with triple-conducting behavior for low-temperature solid oxide fuel cells. Adv. Funct. Mater. 2022, 32, 2209054.

Nano Research
Pages 8086-8094
Cite this article:
Xu S, Qiu H, Jiang S, et al. New strategy for boosting cathodic performance of low temperature solid oxide fuel cells via chlorine doping. Nano Research, 2024, 17(9): 8086-8094. https://doi.org/10.1007/s12274-024-6768-1
Topics:

610

Views

1

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 March 2024
Revised: 07 May 2024
Accepted: 15 May 2024
Published: 23 July 2024
© Tsinghua University Press 2024
Return