AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low cost and low density chloride solid electrolyte for all solid state cathode with high active material ratio

Hao-Yuan Tan1,§Mei-Yu Zhou2,§Zhongyuan Huang3,§Jin-Da Luo2Jing-Tian Yang2Jian-Ping Wang2Ye-Chao Wu2Xiao-Bin Cheng2Zi-Wei Wang2Xu-Dong Hao2Linjun Wang1Ke Gong1Yi-Chen Yin1,2( )Yinguo Xiao3( )Hong-Bin Yao1,2( )
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China

§ Hao-Yuan Tan, Mei-Yu Zhou, and Zhongyuan Huang contributed equally to this work.

Show Author Information

Graphical Abstract

Li1.2Mg0.95Al0.3Cl4 chloride solid electrolyte was obtained by regulating the Li+ concentration of Li2MgCl4 and introducing Al3+ to generate vacancies. Moreover, Li1.2Mg0.95Al0.3Cl4 possesses advantages of low cost, high elemental abundance, and low density.

Abstract

Chloride solid electrolytes (SEs) have attracted widespread attention due to their high room-temperature ionic conductivity and excellent cathode compatibility. However, the conventionally selected central metal elements (e.g., In, Y and Ta) are usually rare and heavy, inevitably causing the high cost and high density of the obtained chloride SEs. Here, by choosing abundant and light Mg and Al as central metal elements, we develop a cheap and low density Li1.2Mg0.95Al0.3Cl4 SE for high active material ratio in all solid state cathode. Partial replacement of Mg2+ by Al3+ in the framework yields vacancies and lowers the non-lithium metal ions occupancy at Mg/Li co-occupied 16d site, effectively relieving the blocking effects by Mg2+ in the pristine spinel Li2–2xMg1+xCl4. Thus, a significantly improved room-temperature conductivity of 3.08 × 10–4 S·cm–1 is achieved, two orders of magnitude higher than that of Li1.2Mg1.4Cl4. More attractively, its low density of only 1.98 g·cm–3 enables low SE mass ratio in cathodes (only 16 wt.%) with still effective electrolyte/cathode contact and lithium-ion conduction inside. When charged to potential of 4.30 V, the as-fabricated Li1.2Mg0.95Al0.3Cl4-based solid lithium battery with uncoated NCM523 cathode can be cycled for over 100 cycles with a capacity retention of 86.68% at room temperature.

Electronic Supplementary Material

Download File(s)
6769_ESM.pdf (1.6 MB)

References

[1]

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

[2]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[3]

Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

[4]

Zhang, H.; Li, C. M.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. B. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives. Chem. Soc. Rev. 2017, 46, 797–815.

[5]

Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352.

[6]

Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem., Int. Ed. 2019, 58, 8681–8686.

[7]

Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579.

[8]

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

[9]

Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030.

[10]

Li, Y. X.; Song, S. B.; Kim, H.; Nomoto, K.; Kim, H.; Sun, X. Y.; Hori, S.; Suzuki, K.; Matsui, N.; Hirayama, M. et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 2023, 381, 50–53.

[11]

Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V Class bulk-type all-solid-state batteries. Adv. Mater. 2018, 30, 1803075.

[12]

Kwak, H.; Han, D.; Lyoo, J.; Park, J.; Jung, S. H.; Han, Y.; Kwon, G.; Kim, H.; Hong, S. T.; Nam, K. W. et al. New cost-effective halide solid electrolytes for all-solid-state batteries: Mechanochemically prepared Fe3+-substituted Li2ZrCl6. Adv. Energy Mater. 2021, 11, 2003190.

[13]

Li, X. N.; Liang, J. W.; Kim, J. T.; Fu, J. M.; Duan, H.; Chen, N.; Li, R. Y.; Zhao, S. Q.; Wang, J. T.; Huang, H. et al. Highly stable halide-electrolyte-based all-solid-state Li-Se batteries. Adv. Mater. 2022, 34, 2200856.

[14]

Li, X. N.; Liang, J. W.; Luo, J.; Norouzi Banis, M.; Wang, C. H.; Li, W. H.; Deng, S. X.; Yu, C.; Zhao, F. P.; Hu, Y. F. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 2019, 12, 2665–2671.

[15]

Liang, J. W.; Li, X. N.; Wang, S.; Adair, K. R.; Li, W. H.; Zhao, Y.; Wang, C. H.; Hu, Y. F.; Zhang, L.; Zhao, S. Q. et al. Site-occupation-tuned superionic Li x ScCl3+ x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 2020, 142, 7012–7022.

[16]

Liang, J. W.; van der Maas, E.; Luo, J.; Li, X. N.; Chen, N.; Adair, K. R.; Li, W. H.; Li, J. J.; Hu, Y. F.; Liu, J. et al. A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 2022, 12, 2103921.

[17]

Schlem, R.; Muy, S.; Prinz, N.; Banik, A.; Shao-Horn, Y.; Zobel, M.; Zeier, W. G. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Adv. Energy Mater. 2020, 10, 1903719.

[18]

Ishiguro, Y.; Ueno, K.; Nishimura, S.; Iida, G.; Igarashib, Y. TaCl5-glassified ultrafast lithium ion-conductive halide electrolytes for high-performance all-solid-state lithium batteries. Chem. Lett. 2023, 52, 237–241.

[19]

Zhou, L. D.; Zuo, T. T.; Kwok, C. Y.; Kim, S. Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L. F. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 2022, 7, 83–93.

[20]

Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 2017, 139, 10909–10918.

[21]

Haxel, G. B.; Hedrick, J. B.; Orris, G. J.; Stauffer, P. H.; Hendley Ii, J. W. Rare earth elements: Critical resources for high technology; Fact sheet 087-02; U.S. Geological Survey, 2002. https://pubs.usgs.gov/fs/2002/fs087-02/(accessed Feb 24, 2024).

[22]

Kanno, R.; Takeda, Y.; Takada, K.; Yamamoto, O. Ionic conductivity and phase transition of the spinel system Li2–2 x M1+ x Cl4 (M = Mg, Mn, Cd). J. Electrochem. Soc. 1984, 131, 469–473.

[23]

Partik, M.; Schneider, M.; Lutz, H. D. Kristallstrukturen von MgCr2O4-Typ Li2VCl4 und Spinell-Typ Li2MgCl4 und Li2CdCl4. Z. Anorg. Allg. Chem. 1994, 620, 791–795.

[24]

Wickel, C.; Lutz, H. D. Crystal structure of lithium magnesium chloride, Li1.7Mg1.15Cl4. Z. Kristallogr. New Cryst. Struct. 1998, 213, 27.

[25]

Cros, C.; Hanebali, L.; Latié, L.; Villeneuve, G.; Gang, W. Structure, ionic motion and conductivity in some solid-solutions of the LiCl-MCl2 systems (M = Mg, V, Mn). Solid State Ionics 1983, 9–10, 139–147

[26]

Liu, Y. S.; Wang, S.; Nolan, A. M.; Ling, C.; Mo, Y. F. Tailoring the cation lattice for chloride lithium-ion conductors. Adv. Energy Mater. 2020, 10, 2002356.

[27]

Haynes, W. M.; Lide, D. R.; Bruno, T. J. Abundance of elements in the earth’s crust and in the sea. In CRC Handbook of Chemistry and Physics, 97th ed.; Haynes, W. M., Ed.; CRC Press: Boca Raton, 2016; pp 14–17.

[28]

Weppner, W.; Huggins, R. A. Ionic conductivity of solid and liquid LiAlCl4. J. Electrochem. Soc. 1977, 124, 35–38.

[29]

Gao, Z. S.; Wang, S. W.; Sun, F. T.; Yu, Z. Q.; Song, H. C.; Liu, Z. Q.; Chen, H. J. Enhanced electrochemical properties of Li2MgCl4 by Zn substitution for all-solid-state batteries. J. Solid State Chem. 2023, 328, 124361.

[30]

Whiteley, J. M.; Taynton, P.; Zhang, W.; Lee, S. H. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv. Mater. 2015, 27, 6922–6927.

[31]

Li, S. H.; Yang, Z. H.; Wang, S. B.; Ye, M. Q.; He, H. C.; Zhang, X.; Nan, C. W.; Wang, S. Sulfide-based composite solid electrolyte films for all-solid-state batteries. Commun. Mater. 2024, 5, 44.

[32]

Perenthaler, E.; Schulz, H.; Rabenau, A. Die strukturen von LiAlCl4 und NaAlCl4 als funktion der temperatur. Z. Anorg. Allg. Chem. 1982, 491, 259–265.

[33]

Wickel, C.; Zhang, Z.; Lutz, H. D. Kristallstruktur und elektrische leitfähigkeit von Li2–2 x Mn1+ x Cl4-spinelltyp-mischkristallen. Z. Anorg. Allg. Chem. 1994, 620, 1537–1542.

[34]

Zhou, L. D.; Kwok, C. Y.; Shyamsunder, A.; Zhang, Q.; Wu, X. H.; Nazar, L. F. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 2020, 13, 2056–2063.

[35]

Krauskopf, T.; Culver, S. P.; Zeier, W. G. Local tetragonal structure of the cubic superionic conductor Na3PS4. Inorg. Chem. 2018, 57, 4739–4744.

[36]

Li, Y. X.; Daikuhara, S.; Hori, S.; Sun, X. Y.; Suzuki, K.; Hirayama, M.; Kanno, R. Oxygen substitution for Li-Si-P-S-Cl solid electrolytes toward purified Li10GeP2S12-Type phase with enhanced electrochemical stabilities for all-solid-state batteries. Chem. Mater. 2020, 32, 8860–8867.

[37]

Schlem, R.; Banik, A.; Ohno, S.; Suard, E.; Zeier, W. G. Insights into the lithium sub-structure of superionic conductors Li3YCl6 and Li3YBr6. Chem. Mater. 2021, 33, 327–337.

[38]

Li, X. N.; Liang, J. W.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C. H.; Banis, M. N.; Sham, T. K.; Zhang, L.; Zhao, S. Q. et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem., Int. Ed. 2019, 58, 16427–16432.

[39]

Bohnsack, A.; Stenzel, F.; Zajonc, A.; Balzer, G.; Wickleder, M. S.; Meyer, G. Ternary halides of the A3MX6 type.VI. Ternary chlorides of the rare-earth elements with lithium, Li3MCl6 (M = Tb-Lu, Y, Sc): Synthesis, crystal structures, and ionic motion. Z. Anorg. Allg. Chem. 1997, 623, 1067–1073.

[40]

Robertson, A. D.; Martin, S. G.; Coats, A.; West, A. R. Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5–3 x RE0.5+ x TiO3: Re = La, Nd. J. Mater. Chem. 1995, 5, 1405–1412.

[41]

Xie, H.; Alonso, J. A.; Li, Y. T.; Fernández-Díaz, M. T.; Goodenough, J. B. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem. Mater. 2011, 23, 3587–3589.

[42]

Reeves-McLaren, N.; Smith, R. I.; West, A. R. Lithium-ion conduction pathways in complex lithium spinels Li2MGe3O8 (M = Ni or Zn). Chem. Mater. 2011, 23, 3556–3563.

[43]

Li, F.; Cheng, X. B.; Lu, G. X.; Yin, Y. C.; Wu, Y. C.; Pan, R. J.; Luo, J. D.; Huang, F. Y.; Feng, L. Z.; Lu, L. L. et al. Amorphous chloride solid electrolytes with high Li-ion conductivity for stable cycling of all-solid-state high-nickel cathodes. J. Am. Chem. Soc. 2023, 145, 27774–27787.

[44]

Kim, S. Y.; Kaup, K.; Park, K. H.; Assoud, A.; Zhou, L. D.; Liu, J.; Wu, X. H.; Nazar, L. F. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries. ACS Mater. Lett. 2021, 3, 930–938.

[45]

Wang, C. H.; Liang, J. W.; Kim, J. T.; Sun, X. L. Prospects of halide-based all-solid-state batteries: From material design to practical application. Sci. Adv. 2022, 8, eadc9516.

[46]

Kwak, H.; Kim, J. S.; Han, D.; Kim, J. S.; Park, J.; Kwon, G.; Bak, S. M.; Heo, U.; Park, C.; Lee, H. W. et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat. Commun. 2023, 14, 2459.

[47]

Yin, Y. C.; Yang, J. T.; Luo, J. D.; Lu, G. X.; Huang, Z. Y.; Wang, J. P.; Li, P.; Li, F.; Wu, Y. C.; Tian, T. et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 2023, 616, 77–83.

[48]

Wang, K.; Ren, Q. Y.; Gu, Z. Q.; Duan, C. M.; Wang, J. Z.; Zhu, F.; Fu, Y. Y.; Hao, J. P.; Zhu, J. F.; He, L. H. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 2021, 12, 4410.

[49]

Hu, L.; Wang, J. Z.; Wang, K.; Gu, Z. Q.; Xi, Z. W.; Li, H.; Chen, F.; Wang, Y. X.; Li, Z. Y.; Ma, C. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Nat. Commun. 2023, 14, 3807.

[50]

Dai, T.; Wu, S. Y.; Lu, Y. X.; Yang, Y.; Liu, Y.; Chang, C.; Rong, X. H.; Xiao, R. J.; Zhao, J. M.; Liu, Y. H. et al. Inorganic glass electrolytes with polymer-like viscoelasticity. Nat. Energy 2023, 8, 1221–1228.

[51]

Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens. Matter 1993, 192, 55–69.

Nano Research
Pages 8826-8833
Cite this article:
Tan H-Y, Zhou M-Y, Huang Z, et al. Low cost and low density chloride solid electrolyte for all solid state cathode with high active material ratio. Nano Research, 2024, 17(10): 8826-8833. https://doi.org/10.1007/s12274-024-6769-0
Topics:
Part of a topical collection:

479

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 14 February 2024
Revised: 06 May 2024
Accepted: 15 May 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return