AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Capturing Plateau–Rayleigh instability in silver nanowires via ultrafast electron microscopy

Shuai JiangVolkan Ortalan( )
Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
Show Author Information

Graphical Abstract

The Plateau–Rayleigh instability dynamics in the silver nanowire were captured by the single-shot ultrafast transmission electron microscopy.

Abstract

Understanding the structural stability of nanomaterials such as nanowires is imperative for their practical applications. Here, using single-shot ultrafast transmission electron microscopy, we captured the Plateau–Rayleigh instability behavior of silver nanowires decomposing into silver nanoparticles upon laser irradiation on nanosecond time scales. We found that this dynamic process can be accelerated by a factor of 10 through increasing the peak laser fluence from 6.03 to 14.60 mJ/cm2. Moreover, by comparing the laser fluence required to initiate the Plateau–Rayleigh instability in silver nanowires on carbon and Formvar membranes, it was found that the main driving force for the Plateau–Rayleigh instability in this study was substrate heating. Finite element analysis and molecular dynamics simulations are also applied to estimate the temperature jump of the nanowires and atomistic behavior, respectively. In addition, the complex motions of silver nanowires under laser irradiation were systematically investigated by combining the results of ultrafast transmission electron microscopy with scanning electron microscopy characterizations and were determined to be related to nanowire–membrane interactions or pre-existing stresses on the nanowires, which in turn demonstrated the potential of ultrafast transmission electron microscopy for the characterization of nanomaterials and devices under extreme conditions.

Electronic Supplementary Material

Download File(s)
6770_ESM.pdf (379.5 KB)

References

[1]
Plateau, J. A. F. Statique Expérimentale et Théorique des Liquides Soumis Aux Seules Forces Moléculaires; Gauthier-Villars: Paris, 1873.
[2]

Lord Rayleigh, F. R. S. On the instability of jets. Proc. London Math. Soc. 1878, s1–10, 4–13.

[3]

Eggers, J.; Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 2008, 71, 036601.

[4]

Möbius, M. E. Clustering instability in a freely falling granular jet. Phys. Rev. E 2006, 74, 051304.

[5]

Royer, J. R.; Evans, D. J.; Oyarte, L.; Guo, Q. T.; Kapit, E.; Möbius, M. E.; Waitukaitis, S. R.; Jaeger, H. M. High-speed tracking of rupture and clustering in freely falling granular streams. Nature 2009, 459, 1110–1113.

[6]

Koplik, J.; Banavar, J. R. Molecular dynamics of interface rupture. Phys. Fluids 1993, 5, 521–536.

[7]

Kawano, S. Molecular dynamics of rupture phenomena in a liquid thread. Phys. Rev. E 1998, 58, 4468–4472.

[8]

Moseler, M.; Landman, U. Formation, stability, and breakup of nanojets. Science 2000, 289, 1165–1169.

[9]

Shin, H. S.; Yu, J.; Song, J. Y. Size-dependent thermal instability and melting behavior of Sn nanowires. Appl. Phys. Lett. 2007, 91, 173106.

[10]

Xu, S.; Li, P. F.; Lu, Y. In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires. Nano Res. 2018, 11, 625–632.

[11]

Li, P. F.; Han, Y.; Zhou, X.; Fan, Z. X.; Xu, S.; Cao, K.; Meng, F. L.; Gao, L. B.; Song, J.; Zhang, H. et al. Thermal effect and Rayleigh instability of ultrathin 4H hexagonal gold nanoribbons. Matter 2020, 2, 658–665.

[12]

Molares, M. E. T.; Balogh, A. G.; Cornelius, T. W.; Neumann, R.; Trautmann, C. Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett. 2004, 85, 5337–5339.

[13]

Kondic, L.; Diez, J. A.; Rack, P. D.; Guan, Y. F.; Fowlkes, J. D. Nanoparticle assembly via the dewetting of patterned thin metal lines: Understanding the instability mechanisms. Phys. Rev. E 2009, 79, 026302.

[14]

Oh, H.; Lee, J.; Lee, M. Transformation of silver nanowires into nanoparticles by Rayleigh instability: Comparison between laser irradiation and heat treatment. Appl. Surf. Sci. 2018, 427, 65–73.

[15]

Fowlkes, J. D.; Kondic, L.; Diez, J.; Wu, Y. Y.; Rack, P. D. Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 2011, 11, 2478–2485.

[16]

Wu, Y. Y.; Fowlkes, J. D.; Rack, P. D.; Diez, J. A.; Kondic, L. On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: Competing liquid-phase instability and transport mechanisms. Langmuir 2010, 26, 11972–11979.

[17]

Fuentes-Cabrera, M.; Rhodes, B. H.; Fowlkes, J. D.; López-Benzanilla, A.; Terrones, H.; Simpson, M. L.; Rack, P. D. Molecular dynamics study of the dewetting of copper on graphite and graphene: Implications for nanoscale self-assembly. Phys. Rev. E 2011, 83, 041603.

[18]

Allaire, R. H.; Kondic, L.; Cummings, L. J.; Rack, P. D.; Fuentes-Cabrera, M. The role of phase separation on Rayleigh–Plateau type instabilities in alloys. J. Phys. Chem. C 2021, 125, 5723–5731.

[19]

LaGrange, T.; Armstrong, M. R.; Boyden, K.; Brown, C. G.; Campbell, G. H.; Colvin, J. D.; DeHope, W. J.; Frank, A. M.; Gibson, D. J.; Hartemann, F. V. et al. Single-shot dynamic transmission electron microscopy. Appl. Phys. Lett. 2006, 89, 044105.

[20]

LaGrange, T.; Campbell, G. H.; Reed, B. W.; Taheri, M.; Pesavento, J. B.; Kim, J. S.; Browning, N. D. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM). Ultramicroscopy 2008, 108, 1441–1449.

[21]

Kwon, O. H.; Barwick, B.; Park, H. S.; Baskin, J. S.; Zewail, A. H. 4D visualization of embryonic, structural crystallization by single-pulse microscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 8519–8524.

[22]

Park, H. S.; Kwon, O. H.; Baskin, J. S.; Barwick, B.; Zewail, A. H. Direct observation of martensitic phase-transformation dynamics in iron by 4D single-pulse electron microscopy. Nano Lett. 2009, 9, 3954–3962.

[23]

McKeown, J. T.; Roberts, N. A.; Fowlkes, J. D.; Wu, Y. Y.; LaGrange, T.; Reed, B. W.; Campbell, G. H.; Rack, P. D. Real-time observation of nanosecond liquid-phase assembly of nickel nanoparticles via pulsed-laser heating. Langmuir 2012, 28, 17168–17175.

[24]

Yoo, B. K.; Kwon, O. H.; Liu, H. H.; Tang, J.; Zewail, A. H. Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions. Nat. Commun. 2015, 6, 8639.

[25]

Fu, X. W.; Chen, B.; Tang, J.; Hassan, M. T. H.; Zewail, A. H. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy. Science 2017, 355, 494–498.

[26]

Chen, B.; Fu, X. W.; Tang, J.; Lysevych, M.; Tan, H. H.; Jagadish, C.; Zewail, A. H. Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy. Proc. Natl. Acad. Sci. USA 2017, 114, 12876–12881.

[27]

Olshin, P. K.; Voss, J. M.; Drabbels, M.; Lorenz, U. J. Real-time observation of jumping and spinning nanodroplets. Struct. Dyn. 2020, 7, 011101.

[28]

Zhang, Y. Z.; Li, Z. W.; Li, Z. A.; Li, J.; Li, J. Q.; Yang, H. X. Nanosecond time-resolved transmission electron diffraction measurements on ion substitution dynamics. J. Phys. Chem. C 2022, 126, 20929–20936.

[29]

Tao, Z. C.; Guo, Q. G.; Gao, X. Q.; Liu, L. The wettability and interface thermal resistance of copper/graphite system with an addition of chromium. Mater. Chem. Phys. 2011, 128, 228–232.

[30]

Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Modelling Simul. Mater. Sci. Eng. 2010, 18, 015012.

Nano Research
Pages 8402-8407
Cite this article:
Jiang S, Ortalan V. Capturing Plateau–Rayleigh instability in silver nanowires via ultrafast electron microscopy. Nano Research, 2024, 17(9): 8402-8407. https://doi.org/10.1007/s12274-024-6770-7
Topics:

510

Views

0

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 April 2024
Revised: 13 May 2024
Accepted: 15 May 2024
Published: 23 July 2024
© Tsinghua University Press 2024
Return