AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-atom Ni-N4 for enhanced electrochemical sensing

Zhuhui Qin1,2,3,§Bo Tang4,§Guiru Zhang5,§Chongqing Zhu4( )Kun Jiang5( )Bowei Zhang1,2,3( )Fu-Zhen Xuan1,2,3( )
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Zhuhui Qin, Bo Tang, and Guiru Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Ni-N4-C single atom catalyst (SAC) was fabricated via a two-step pyrolysis and acid leaching method for electrochemical sensing of dopamine (DA) and uric acid (UA). The Ni-N4-C SAC can simultaneously detect the DA and UA in a mixture with excellent performance. This work opens a door for the application of SACs in electrochemical sensing.

Abstract

Single-atom catalysts (SACs) attract widespread attention in heterogeneous catalysis due to their maximum atomic utilization efficiency and unique physical and chemical properties. However, their applications in chemical sensing keep huge potential but remain unclear. Herein, a Ni-N4-C SAC was synthesized for the trace detection of dopamine (DA) and uric acid (UA). The Ni-N4-C SAC exhibited superior sensing performance compared to the Ni clusters. The detection range for DA and UA were 0.05–75 µM and 5–90 µM with detection limits of 0.027 and 0.82 µM, respectively. Density functional theory (DFT) computations indicate that Ni-N4-C has a lower reaction barrier during electrochemical process, indicating that the atomic Ni sites possess higher intrinsic activity than Ni clusters. Moreover, DA and UA show strong potential dependency on the Ni-N4-C catalyst, indicating its applicability for their concurrent detection. This work extends the application of SACs in chemical sensing.

Electronic Supplementary Material

Download File(s)
6771_ESM.pdf (1.6 MB)

References

[1]

Krishnamoorthy, K.; Sudha, V.; Senthil Kumar, S. M.; Thangamuthu, R. Simultaneous determination of dopamine and uric acid using copper oxide nano-rice modified electrode. J. Alloys Compd. 2018, 748, 338–347.

[2]

Akbıyık, M. A.; Bodur, O. C.; Keskin, M.; Kara, M.; Dinç, S.; Arslan, H.; Özmen, M.; Arslan, F. A sensitive amperometric biosensor based on carbon dot 3-chloropropyl-trimethoxysilane modified electrode for detection of neurotransmitter dopamine. J. Electrochem. Soc. 2023, 170, 037517.

[3]

Haque, M. A.; Hasan, M. M.; Islam, T.; Razzak, M. A.; Alharthi, N. H.; Sindan, A.; Karim, M. R.; Basha, S. I.; Aziz, M. A.; Ahammad, A. J. S. Hollow reticular shaped highly ordered rice husk carbon for the simultaneous determination of dopamine and uric acid. Electroanalysis 2020, 32, 1957–1970.

[4]

Yue, J. Y.; Song, L. P.; Wang, Y. T.; Yang, P.; Ma, Y.; Tang, B. Fluorescence/colorimetry/smartphone triple-mode sensing of dopamine by a COF-based peroxidase-mimic platform. Anal. Chem. 2022, 94, 14419–14425.

[5]

Ma, Z. Y.; Xu, Y. F.; Li, P. P.; Cheng, D.; Zhu, X. H.; Liu, M. L.; Zhang, Y. Y.; Liu, Y.; Yao, S. Z. Self-catalyzed surface reaction-induced fluorescence resonance energy transfer on cysteine-stabilized MnO2 quantum dots for selective detection of dopamine. Anal. Chem. 2021, 93, 3586–3593.

[6]

Li, Q. Z.; Qiu, Y. L.; Han, W. N.; Zheng, Y. Q.; Wang, X. Y.; Xiao, D. D.; Mao, M.; Li, Q. Determination of uric acid in biological samples by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry and study on pathogenesis of pulmonary arterial hypertension in pulmonary artery endothelium cells. RSC Adv. 2018, 8, 25808–25814.

[7]

Wu, W. T.; Chen, X.; Jiao, Y. T.; Fan, W. T.; Liu, Y. L.; Huang, W. H. Versatile construction of biomimetic nanosensors for electrochemical monitoring of intracellular glutathione. Angew. Chem. 2022, 134, e202115820.

[8]

Yan, L. P.; Wen, M. Y.; Qin, Y.; Bi, C. X.; Zhao, Y.; Fan, W. T.; Yan, J.; Huang, W. H.; Liu, Y. L. Soft electrodes for electrochemical and electrophysiological monitoring of beating cardiomyocytes. Angew. Chem. 2022, 134, e202203757.

[9]

Zhao, R. Y.; Wang, T.; Li, J. J.; Shi, Y. X.; Hou, M.; Yang, Y.; Zhang, Z. C.; Lei, S. B. Two-dimensional covalent organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Nano Res. 2023, 16, 8570–8595.

[10]

Jiang, J. Z.; Li, F. Y.; Ding, L.; Zhang, C. X.; Arramel; Li, X. MXenes/CNTs-based hybrids: Fabrications, mechanisms, and modification strategies for energy and environmental applications. Nano Res. 2024, 17, 3429–3454.

[11]

Luo, E. G.; Yang, T. T.; Liang, J. Y.; Chang, Y. H.; Zhang, J. M.; Hu, T. J.; Ge, J. J.; Jia, J. F. Selective oxygen electroreduction to hydrogen peroxide in acidic media: The superiority of single-atom catalysts. Nano Res. 2024, 17, 4668–4681.

[12]

Malekzad, H.; Sahandi Zangabad, P.; Mirshekari, H.; Karimi, M.; Hamblin, M. R. Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotechnol. Rev. 2017, 6, 301–329.

[13]

Rong, C.; Su, T.; Li, Z. K.; Chu, T. S.; Zhu, M. L.; Yan, Y. B.; Zhang, B. W.; Xuan, F. Z. Elastic properties and tensile strength of 2D Ti3C2T x MXene monolayers. Nat. Commun. 2024, 15, 1566.

[14]

Han, J. X.; Bian, J. J.; Sun, C. W. Recent advances in single-atom electrocatalysts for oxygen reduction reaction. Research 2020, 2020, 9512763.

[15]

Zhou, L.; Tian, P. F.; Zhang, B. W.; Xuan, F. Z. Data-driven rational design of single-atom materials for hydrogen evolution and sensing. Nano Res. 2024, 17, 3352–3358.

[16]

Yang, X. J.; Rong, C.; Zhang, L.; Ye, Z. K.; Wei, Z. M.; Huang, C. D.; Zhang, Q.; Yuan, Q.; Zhai, Y. M.; Xuan, F. Z. et al. Mechanistic insights into C–C coupling in electrochemical CO reduction using gold superlattices. Nat. Commun. 2024, 15, 720.

[17]

Chu, T. S.; Rong, C.; Zhou, L.; Mao, X. Y.; Zhang, B. W.; Xuan, F. Z. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, 2206783.

[18]

Chu, T. S.; Zhou, L.; Zhang, B. W.; Xuan, F. Z. Accurate atomic scanning transmission electron microscopy analysis enabled by deep learning. Nano Res. 2024, 17, 2971–2980.

[19]

Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

[20]

Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.

[21]

Wang, Z. W.; Wang, W. L.; Wang, J.; Wang, D. S.; Liu, M. L.; Wu, Q. Y.; Hu, H. Y. Single-atom catalysts with ultrahigh catalase-like activity through electron filling and orbital energy regulation. Adv. Funct. Mater. 2023, 33, 2209560.

[22]

Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

[23]

Li, P. H.; Song, Z. Y.; Xiao, X. Y.; Liang, B.; Yang, M.; Chen, S. H.; Liu, W. Q.; Huang, X. J. Coordination engineering strategy of iron single-atom catalysts boosts anti-Cu(II) interference detection of As(III) with a high sensitivity. J. Hazard. Mater. 2023, 442, 130122.

[24]

Jiao, L.; Xu, W. Q.; Wu, Y.; Wang, H. J.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. On the road from single-atom materials to highly sensitive electrochemical sensing and biosensing. Anal. Chem. 2023, 95, 433–443.

[25]

Wang, M. Y.; Ye, M. F.; Wang, J. Y.; Xu, Y.; Wang, Z. D.; Tong, X. Y.; Han, X. Y.; Zhang, K.; Wang, W. H.; Wu, K. L. et al. Recent advances and applications of single atom catalysts based electrochemical sensors. Nano Res. 2024, 17, 2994–3013.

[26]

Li, R. M.; Guo, W. W.; Zhu, Z. J.; Zhai, Y. L.; Wang, G. W.; Liu, Z.; Jiao, L.; Zhu, C. Z.; Lu, X. Q. Single-atom indium boosts electrochemical dopamine sensing. Anal. Chem. 2023, 95, 7195–7201.

[27]

Xie, X. L.; Wang, D. P.; Guo, C. X.; Liu, Y. H.; Rao, Q. H.; Lou, F. M.; Li, Q. N.; Dong, Y. Q.; Li, Q. F.; Yang, H. B. et al. Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal. Chem. 2021, 93, 4916–4923.

[28]

Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

[29]

Yun, R. R.; Li, T. H.; Zhang, B. B.; He, L.; Liu, S. J.; Yu, C.; Chen, Z.; Luo, S. Z. Amino induced high-loading atomically dispersed Co sites on N-doped hollow carbon for efficient CO2 transformation. Chem. Commun. 2022, 58, 6602–6605.

[30]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[31]

Liu, J.; Zhang, G. R.; Ye, K.; Xu, K.; Sheng, Y. L.; Yu, C.; Zhang, H.; Li, Q. X.; Liang, Z.; Jiang, K. Top-down manufacturing of efficient CO2 reduction catalysts from the gasification residue carbon. Chem. Commun. 2023, 59, 611–614.

[32]

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene Nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

[33]

Ni, B. X.; Shen, P.; Zhang, G. R.; Zhao, J. J.; Ding, H. H.; Ye, Y. F.; Yue, Z. Y.; Yang, H.; Wei, H.; Jiang, K. Second-shell N dopants regulate acidic O2 reduction pathways on isolated Pt sites. J. Am. Chem. Soc. 2024, 146, 11181–11192.

[34]

Immanuel, S.; Aparna, T. K.; Sivasubramanian, R. A facile preparation of Au-SiO2 nanocomposite for simultaneous electrochemical detection of dopamine and uric acid. Surf. Interfaces 2019, 14, 82–91.

[35]

Narayana, A. L.; Venkataprasad, G.; Praveen, S.; Ho, C. W.; Kim, H. K.; Reddy, T. M.; Julien, C. M.; Lee, C. W. Li2TiO3-MWCNT nanocomposite electrodes for determination of dopamine in electrochemical sensing platform. Sens. Actuators A: Phys. 2022, 341, 113555.

[36]

Rajendrachari, S.; Basavegowda, N.; Vinaykumar, R.; Narsimhachary, D.; Somu, P.; Lee, M. J. Electrocatalytic determination of methyl orange dye using mechanically alloyed novel metallic glass modified carbon paste electrode by cyclic voltammetry. Inorg. Chem. Commun. 2023, 155, 111010.

[37]

Ma, Y. Y.; Wei, Z. Y.; Wang, Y.; Ding, Y. H.; Jiang, L. P.; Fu, X.; Zhang, Y.; Sun, J.; Zhu, W. X.; Wang, J. L. Surface oxygen functionalization of carbon cloth toward enhanced electrochemical dopamine sensing. ACS Sustain. Chem. Eng. 2021, 9, 16063–16072.

Nano Research
Pages 7658-7664
Cite this article:
Qin Z, Tang B, Zhang G, et al. Single-atom Ni-N4 for enhanced electrochemical sensing. Nano Research, 2024, 17(8): 7658-7664. https://doi.org/10.1007/s12274-024-6771-6
Topics:

344

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 April 2024
Revised: 15 May 2024
Accepted: 15 May 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return