AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polyoxometalate as the assembly material to self-assembled Ni(OH)2 nanosheets with electrocatalytic performance

Danyang He1Tianyang Li1Luozhen Jiang2Fei Wang1Zihao Xing3Nan Wang1 ( )Zhiyu Jia1 ( )Guo-Yu Yang1( )
Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Facluty of Chemistry, Northeast Normal University, Changchun 130024, China
Show Author Information

Graphical Abstract

Polyoxometalate (H3O40PW12, PW12) as the assembly material is applied for self-assembled Ni(OH)2 nanosheets, the PW12 hybrid Ni(OH)2 has the electrocatalytic performance.

Abstract

Developing non-noble metal-based electrocatalyst with high catalytic activity is essential for advancing hydrogen energy technologies. This study introduces a hydrothermal method for synthesizing order Ni(OH)2 nanosheets, with H3O40PW12 (denoted as PW12) loaded onto reduced graphene oxide (rGO) coated on nickel foam (referred to as PW12-Ni(OH)2/rGO). This method contrasts with the electrodeposition of Ni(OH)2, where PW12 is added to the synthetic system to direct the assembly and morphology of the Ni(OH)2 through a hydrothermal reaction. In this work, the nickel foam acts dual roles as both the substrate and the source of nickel for the formation of Ni(OH)2. The PW12-Ni(OH)2/rGO nanosheets, when successfully prepared and loaded onto the nickel foam (NF), exhibited superior electrocatalytic activity for the hydrogen evolution reaction (HER) in an alkaline electrolyte, achieving a current density of 10 mA·cm² at an overpotential of 69 mV. Furthermore, we endeavored to expand the application of this material towards the oxygen evolution reaction (OER) by preparing PW12-(Fe/Co)Ni(OH)2/rGO through the addition of metal cations. This nanocomposite displayed outstanding electrocatalytic activity in alkaline electrolytes, with a current density of 10 mA·cm² at an overpotential of 211 mV, and demonstrated excellent stability over a 50 h period in a 1 M KOH solution. The results presented in this paper offer an effective strategy for the preparation of polyoxometalate-based inorganic materials with diverse functionalities, applicable to both HER and OER.

Electronic Supplementary Material

Download File(s)
6772_ESM.pdf (3.6 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[3]

Wang, Y. D.; Wu, W.; Chen, R. Z.; Lin, C. X.; Mu, S. C.; Cheng, N. C. Reduced water dissociation barrier on constructing Pt-Co/CoO x interface for alkaline hydrogen evolution. Nano Res. 2022, 15, 4958–4964.

[4]

Qi, J.; Zhong, X. Y.; Zeng, H. Y.; Wang, C.; Liu, Z. F.; Chen, J. J.; Gu, L.; Hong, E. N.; Li, M. X.; Li, J. et al. In-situ study for the elastic structure evolutions of three-dimensional Ir–O framework during the oxygen evolution reaction in acid. Nano Res. 2023, 16, 9022–9030

[5]

Qin, J. S.; Xie, T. H.; Zhou, D. J.; Luo, L.; Zhang, Z. Y.; Shang, Z. C.; Li, J. W.; Mohapatra, L.; Yu, J. W.; Xu, H. J. et al. Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries. Nano Res. 2021, 14, 2154–2159.

[6]

Song, Z. P.; Yi, J. Z.; Qi, J.; Zheng, Q.; Zhu, Z. L.; Tao, L.; Cao, Y.; Li, Y.; Gao, Z. Y.; Zhang, R. Z. et al. Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Res. 2022, 15, 4687–4692.

[7]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[8]

Mu, X. Q.; Gu, X. Y.; Dai, S. P.; Chen, J. B.; Cui, Y. J.; Chen, Q.; Yu, M.; Chen, C. Y.; Liu, S. L.; Mu, S. C. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy Environ. Sci. 2022, 15, 4048–4057.

[9]

Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

[10]

Ping, J. J.; He, D. Y.; Wang, F.; Wang, N.; Fu, Y. C.; Xing, Z. H.; Jia, Z. Y.; Yang, G. Y. Nanocomposite: Keggin-type Co4-polyoxometalate@cobaltporphyrin linked graphdiyne for hydrogen evolution in seawater. Nano Res. 2023, 17, 1281–1287.

[11]

Xu, X. M.; Wang, Y. C.; Shang, W. H.; Wang, F.; Zhang, Q.; Li, K.; Wu, M.; Jia, Z. Y. Cobalt carbonate hydroxides anchored on nanoscale pyrenely-graphdiyne nanowalls toward bifunctional electrocatalysts with high performance and stability for overall water splitting. New J. Chem. 2023, 47, 11594–11601.

[12]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[13]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[14]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[15]

Han, X. B.; Li, Y. G.; Zhang, Z. M.; Tan, H. Q.; Lu, Y.; Wang, E. B. Polyoxometalate-based nickel clusters as visible light-driven water oxidation catalysts. J. Am. Chem. Soc. 2015, 137, 5486–5493.

[16]

Nisar, A.; Zhuang, J.; Wang, X. Construction of amphiphilic polyoxometalate mesostructures as a highly efficient desulfurization catalyst. Adv. Mater. 2011, 23, 1130–1135.

[17]

Xu, X. X.; Gao, X.; Lu, T. T.; Liu, X. X.; Wang, X. L. Hybrid material based on a coordination-complex-modified polyoxometalate nanorod (CC/POMNR) and PPy: A new visible light activated and highly efficient photocatalyst. J. Mater. Chem. A 2015, 3, 198–206.

[18]

Klein, M.; Waldvogel, S. R. Counter electrode reactions-important stumbling blocks on the way to a working electro-organic synthesis. Angew. Chem., Int. Ed. 2022, 61, e202204140.

[19]

Ni, B.; Shi, Y. A.; Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 2018, 30, 1802031.

[20]

Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

[21]

Miao, J.; Lang, Z. L.; Zhang, X. Y.; Kong, W. G.; Peng, O. W.; Yang, Y.; Wang, S. P.; Cheng, J. J.; He, T. C.; Amini, A. et al. Polyoxometalate-derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater. Adv. Funct. Mater. 2019, 29, 1805893.

[22]

Miras, H. N.; Yan, J.; Long, D. L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.

[23]

Miras, H. N.; Vilà-Nadal, L.; Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679–5699.

[24]

Wang, J.; Lin, C. G.; Li, J. T.; Wei, J.; Song, Y. F.; Guo, J. B. Stabilization and electro-optical switching of liquid crystal blue phases using unpolymerized and polymerized polyoxometalate-based nanoparticles. Mol. Cryst. Liq. Cryst. 2016, 634, 12–23.

[25]

Sun, H.; Xu, X. M.; Jing, C. J.; Shang, W. H.; Wang, Y. C.; Zeng, M. L.; Jia, Z. Y. Composite clusters: Co5.7Ni2.3W12O42(OH)4@fluoro-graphdiyne as a stable electrode for sustained electrochemical oxygen evolution under high current conditions. Mater. Chem. Front. 2021, 5, 7666–7674.

[26]

Yu, B.; Zhang, S. M.; Wang, X. Helical microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem., Int. Ed. 2021, 60, 17404–17409.

[27]

Gultom, N. S.; Abdullah, H.; Hsu, C. N.; Kuo, D. H. Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide. Chem. Eng. J. 2021, 419, 129608.

[28]

Zhou, Y. F.; Wang, Z. X.; Pan, Z. Y.; Liu, L.; Xi, J. Y.; Luo, X. L.; Shen, Y. Exceptional performance of hierarchical Ni-Fe (hydr)oxide@NiCu electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1806769

[29]

Ji, P. X.; Zheng, D. Y.; Jin, H. H.; Chen, D.; Luo, X.; Yang, J. L.; Wang, Z. B.; Mu, S. C. Ultra-fast in situ reconstructed nickel (oxy)hydroxide nanoparticle crosslinked structure for super-efficient alkaline water electrolysis by sacrificing template strategy. Small Struct. 2023, 4, 2300013.

[30]

Shang, W. H.; Wang, Y. C.; Jiang, Y. L.; Wu, M.; Zeng, M. L.; Wang, P.; Qiu, L. L.; Jia, Z. Y. Nanocomposite: Co4-substituted polyoxometalate@β-FeOOH as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Appl. Catal. A Gen. 2022, 644, 118810.

[31]

Zheng, Y.; Xu, X. X. Surface atom regulation on polyoxometalate electrocatalyst for simultaneous low-voltage H2 production and phenol degradation. ACS Appl. Mater. Interfaces 2020, 12, 53739–53748.

[32]

Yu, L.; Liang, Q. A fully noble-metal-free electrocatalyst based on a cobalt-polyoxometalate immobilized in a layered double hydroxide for water oxidation at neutral pH. New J. Chem. 2022, 46, 3073–3077.

[33]

Ho, W. H.; Chen, T. Y.; Otake, K. I.; Chen, Y. C.; Wang, Y. S.; Li, J. H.; Chen, H. Y.; Kung, C. W. Polyoxometalate adsorbed in a metal-organic framework for electrocatalytic dopamine oxidation. Chem. Commun. 2020, 56, 11763–11766.

[34]

Yin, D.; Wang, M. L.; Cao, Y. D.; Yang, X. P.; Ji, S. Y.; Hao, H. P.; Gao, G. G.; Fan, L. L.; Liu, H. Polyoxometalate@ZIF induced CoWO4/WS2@C-N nanoflower as a highly efficient catalyst for Zn-air batteries. ACS Appl. Energy Mater. 2021, 4, 6892–6902.

[35]

Kozhevnikov, I. V.; Sinnema, A.; Jansen, R. J. J.; van Bekkum, H. 17O NMR determination of proton sites in solid heteropoly acid H3PW12O40.31P, 29Si and 17ONMR, FT-IR and XRD study of H3PW12O40 and H4SiW12O40 supported on carbon. Catal. Lett. 1994, 27, 187–197

[36]

Zhao, Z.; Zhang, S. B.; Jin, M.; Zhang, H. M. Pt nanoparticle dispersed Ni(OH)2 nanosheets via a pulsed laser deposition method efficiently enhanced hydrogen evolution reaction performance in alkaline conditions. RSC Adv. 2023, 13, 13840–13844.

[37]

Lee, S. Y.; Oh, H. J.; Kim, M.; Cho, H. S.; Lee, Y. K. Insights into enhanced activity and durability of hierarchical Fe-doped Ni(OH)2/Ni catalysts for alkaline oxygen evolution reaction: In situ XANES studies. Appl. Catal. B Environ. 2023, 324, 122269.

[38]

Thilagavathi, T.; Venugopal, D.; Thangaraju, D.; Marnadu, R.; Palanivel, B.; Imran, M.; Shkir, M.; Ubaidullah, M.; AlFaify, S. A facile co-precipitation synthesis of novel WO3/NiWO4 nanocomposite with improved photocatalytic activity. Mater. Sci. Semicond. Process. 2021, 133, 105970.

[39]

Wang, J.; Ciucci, F. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Appl. Catal B Environ. 2019, 254, 292–299.

Nano Research
Pages 7061-7067
Cite this article:
He D, Li T, Jiang L, et al. Polyoxometalate as the assembly material to self-assembled Ni(OH)2 nanosheets with electrocatalytic performance. Nano Research, 2024, 17(8): 7061-7067. https://doi.org/10.1007/s12274-024-6772-5
Topics:

342

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 March 2024
Revised: 15 May 2024
Accepted: 17 May 2024
Published: 15 June 2024
© Tsinghua University Press 2024
Return