Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing non-noble metal-based electrocatalyst with high catalytic activity is essential for advancing hydrogen energy technologies. This study introduces a hydrothermal method for synthesizing order Ni(OH)2 nanosheets, with H3O40PW12 (denoted as PW12) loaded onto reduced graphene oxide (rGO) coated on nickel foam (referred to as PW12-Ni(OH)2/rGO). This method contrasts with the electrodeposition of Ni(OH)2, where PW12 is added to the synthetic system to direct the assembly and morphology of the Ni(OH)2 through a hydrothermal reaction. In this work, the nickel foam acts dual roles as both the substrate and the source of nickel for the formation of Ni(OH)2. The PW12-Ni(OH)2/rGO nanosheets, when successfully prepared and loaded onto the nickel foam (NF), exhibited superior electrocatalytic activity for the hydrogen evolution reaction (HER) in an alkaline electrolyte, achieving a current density of 10 mA·cm−² at an overpotential of 69 mV. Furthermore, we endeavored to expand the application of this material towards the oxygen evolution reaction (OER) by preparing PW12-(Fe/Co)Ni(OH)2/rGO through the addition of metal cations. This nanocomposite displayed outstanding electrocatalytic activity in alkaline electrolytes, with a current density of 10 mA·cm−² at an overpotential of 211 mV, and demonstrated excellent stability over a 50 h period in a 1 M KOH solution. The results presented in this paper offer an effective strategy for the preparation of polyoxometalate-based inorganic materials with diverse functionalities, applicable to both HER and OER.
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
Wang, Y. D.; Wu, W.; Chen, R. Z.; Lin, C. X.; Mu, S. C.; Cheng, N. C. Reduced water dissociation barrier on constructing Pt-Co/CoO x interface for alkaline hydrogen evolution. Nano Res. 2022, 15, 4958–4964.
Qi, J.; Zhong, X. Y.; Zeng, H. Y.; Wang, C.; Liu, Z. F.; Chen, J. J.; Gu, L.; Hong, E. N.; Li, M. X.; Li, J. et al. In-situ study for the elastic structure evolutions of three-dimensional Ir–O framework during the oxygen evolution reaction in acid. Nano Res. 2023, 16, 9022–9030
Qin, J. S.; Xie, T. H.; Zhou, D. J.; Luo, L.; Zhang, Z. Y.; Shang, Z. C.; Li, J. W.; Mohapatra, L.; Yu, J. W.; Xu, H. J. et al. Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries. Nano Res. 2021, 14, 2154–2159.
Song, Z. P.; Yi, J. Z.; Qi, J.; Zheng, Q.; Zhu, Z. L.; Tao, L.; Cao, Y.; Li, Y.; Gao, Z. Y.; Zhang, R. Z. et al. Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Res. 2022, 15, 4687–4692.
Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.
Mu, X. Q.; Gu, X. Y.; Dai, S. P.; Chen, J. B.; Cui, Y. J.; Chen, Q.; Yu, M.; Chen, C. Y.; Liu, S. L.; Mu, S. C. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy Environ. Sci. 2022, 15, 4048–4057.
Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.
Ping, J. J.; He, D. Y.; Wang, F.; Wang, N.; Fu, Y. C.; Xing, Z. H.; Jia, Z. Y.; Yang, G. Y. Nanocomposite: Keggin-type Co4-polyoxometalate@cobaltporphyrin linked graphdiyne for hydrogen evolution in seawater. Nano Res. 2023, 17, 1281–1287.
Xu, X. M.; Wang, Y. C.; Shang, W. H.; Wang, F.; Zhang, Q.; Li, K.; Wu, M.; Jia, Z. Y. Cobalt carbonate hydroxides anchored on nanoscale pyrenely-graphdiyne nanowalls toward bifunctional electrocatalysts with high performance and stability for overall water splitting. New J. Chem. 2023, 47, 11594–11601.
Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.
Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.
Han, X. B.; Li, Y. G.; Zhang, Z. M.; Tan, H. Q.; Lu, Y.; Wang, E. B. Polyoxometalate-based nickel clusters as visible light-driven water oxidation catalysts. J. Am. Chem. Soc. 2015, 137, 5486–5493.
Nisar, A.; Zhuang, J.; Wang, X. Construction of amphiphilic polyoxometalate mesostructures as a highly efficient desulfurization catalyst. Adv. Mater. 2011, 23, 1130–1135.
Xu, X. X.; Gao, X.; Lu, T. T.; Liu, X. X.; Wang, X. L. Hybrid material based on a coordination-complex-modified polyoxometalate nanorod (CC/POMNR) and PPy: A new visible light activated and highly efficient photocatalyst. J. Mater. Chem. A 2015, 3, 198–206.
Klein, M.; Waldvogel, S. R. Counter electrode reactions-important stumbling blocks on the way to a working electro-organic synthesis. Angew. Chem., Int. Ed. 2022, 61, e202204140.
Ni, B.; Shi, Y. A.; Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 2018, 30, 1802031.
Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.
Miao, J.; Lang, Z. L.; Zhang, X. Y.; Kong, W. G.; Peng, O. W.; Yang, Y.; Wang, S. P.; Cheng, J. J.; He, T. C.; Amini, A. et al. Polyoxometalate-derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater. Adv. Funct. Mater. 2019, 29, 1805893.
Miras, H. N.; Yan, J.; Long, D. L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.
Miras, H. N.; Vilà-Nadal, L.; Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679–5699.
Wang, J.; Lin, C. G.; Li, J. T.; Wei, J.; Song, Y. F.; Guo, J. B. Stabilization and electro-optical switching of liquid crystal blue phases using unpolymerized and polymerized polyoxometalate-based nanoparticles. Mol. Cryst. Liq. Cryst. 2016, 634, 12–23.
Sun, H.; Xu, X. M.; Jing, C. J.; Shang, W. H.; Wang, Y. C.; Zeng, M. L.; Jia, Z. Y. Composite clusters: Co5.7Ni2.3W12O42(OH)4@fluoro-graphdiyne as a stable electrode for sustained electrochemical oxygen evolution under high current conditions. Mater. Chem. Front. 2021, 5, 7666–7674.
Yu, B.; Zhang, S. M.; Wang, X. Helical microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem., Int. Ed. 2021, 60, 17404–17409.
Gultom, N. S.; Abdullah, H.; Hsu, C. N.; Kuo, D. H. Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide. Chem. Eng. J. 2021, 419, 129608.
Zhou, Y. F.; Wang, Z. X.; Pan, Z. Y.; Liu, L.; Xi, J. Y.; Luo, X. L.; Shen, Y. Exceptional performance of hierarchical Ni-Fe (hydr)oxide@NiCu electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1806769
Ji, P. X.; Zheng, D. Y.; Jin, H. H.; Chen, D.; Luo, X.; Yang, J. L.; Wang, Z. B.; Mu, S. C. Ultra-fast in situ reconstructed nickel (oxy)hydroxide nanoparticle crosslinked structure for super-efficient alkaline water electrolysis by sacrificing template strategy. Small Struct. 2023, 4, 2300013.
Shang, W. H.; Wang, Y. C.; Jiang, Y. L.; Wu, M.; Zeng, M. L.; Wang, P.; Qiu, L. L.; Jia, Z. Y. Nanocomposite: Co4-substituted polyoxometalate@β-FeOOH as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Appl. Catal. A Gen. 2022, 644, 118810.
Zheng, Y.; Xu, X. X. Surface atom regulation on polyoxometalate electrocatalyst for simultaneous low-voltage H2 production and phenol degradation. ACS Appl. Mater. Interfaces 2020, 12, 53739–53748.
Yu, L.; Liang, Q. A fully noble-metal-free electrocatalyst based on a cobalt-polyoxometalate immobilized in a layered double hydroxide for water oxidation at neutral pH. New J. Chem. 2022, 46, 3073–3077.
Ho, W. H.; Chen, T. Y.; Otake, K. I.; Chen, Y. C.; Wang, Y. S.; Li, J. H.; Chen, H. Y.; Kung, C. W. Polyoxometalate adsorbed in a metal-organic framework for electrocatalytic dopamine oxidation. Chem. Commun. 2020, 56, 11763–11766.
Yin, D.; Wang, M. L.; Cao, Y. D.; Yang, X. P.; Ji, S. Y.; Hao, H. P.; Gao, G. G.; Fan, L. L.; Liu, H. Polyoxometalate@ZIF induced CoWO4/WS2@C-N nanoflower as a highly efficient catalyst for Zn-air batteries. ACS Appl. Energy Mater. 2021, 4, 6892–6902.
Kozhevnikov, I. V.; Sinnema, A.; Jansen, R. J. J.; van Bekkum, H. 17O NMR determination of proton sites in solid heteropoly acid H3PW12O40.31P, 29Si and 17ONMR, FT-IR and XRD study of H3PW12O40 and H4SiW12O40 supported on carbon. Catal. Lett. 1994, 27, 187–197
Zhao, Z.; Zhang, S. B.; Jin, M.; Zhang, H. M. Pt nanoparticle dispersed Ni(OH)2 nanosheets via a pulsed laser deposition method efficiently enhanced hydrogen evolution reaction performance in alkaline conditions. RSC Adv. 2023, 13, 13840–13844.
Lee, S. Y.; Oh, H. J.; Kim, M.; Cho, H. S.; Lee, Y. K. Insights into enhanced activity and durability of hierarchical Fe-doped Ni(OH)2/Ni catalysts for alkaline oxygen evolution reaction: In situ XANES studies. Appl. Catal. B Environ. 2023, 324, 122269.
Thilagavathi, T.; Venugopal, D.; Thangaraju, D.; Marnadu, R.; Palanivel, B.; Imran, M.; Shkir, M.; Ubaidullah, M.; AlFaify, S. A facile co-precipitation synthesis of novel WO3/NiWO4 nanocomposite with improved photocatalytic activity. Mater. Sci. Semicond. Process. 2021, 133, 105970.
Wang, J.; Ciucci, F. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Appl. Catal B Environ. 2019, 254, 292–299.