Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Unlocking high-efficiency oxygen evolution reaction through Co-N coordination engineering in Co@N-doped porous carbon core–shell nanoparticles

Shucheng Liu1,2Yu Shuai2Xiaosi Qi2()Zhao Ding1()Yi Liu2()
College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
Show Author Information

Graphical Abstract

View original image Download original image
A method involving Co-N coordination engineering was utilized to design a novel covalent organic framework (COF)/metal-organic framework (MOF) precursor for the preparation of Co@N-doped porous carbon (Co@NC) catalysts, aiming to modulate the Co-N coordination within the catalyst. The adjustment of Co-N coordination can alter the local electronic structure of Co active sites, thereby enhancing the intrinsic activity of the catalyst.

Abstract

Modulation of metal sites coordination can significantly refine the electronic architecture of catalysts, thereby improving their catalytic performance. This work successfully developed a core–shell Co@N-doped porous carbon (Co@NC) catalyst by pyrolyzing the COF/MOF (IISERP-COF3/ZIF-67) composite in an inert atmosphere. The Co@NC catalyst exhibited impressive oxygen evolution reaction (OER) performance, with a small overpotential of 304 mV and a modest Tafel slope of 88.6 mV·dec−1 in a 1 M KOH, alongside remarkable stability, maintaining 98.5% of its activity over 13 h. The role of IISERP-COF3 was pivotal in preventing Co atom aggregation during the ZIF-67 pyrolysis, which facilitated the creation of mesopores for enhanced mass transport and conductivity. Moreover, it effectively modulated the Co-N coordination to fine-tune the electronic structure, thereby optimizing the catalyst's capacity for adsorption of intermediates and boosting its intrinsic activity. Density functional theory (DFT) studies corroborate that the exceptional OER efficiency of Co@NC can be linked to the enhanced Co-N coordination, optimizing the localized electronic structure at the Co active sites. This study not only proposes an innovative approach for optimizing COF/MOF as effective electrocatalysts but also clears the path for the emergence of affordable, high-performance alternatives to precious metal-based catalysts, marking a significant advancement in sustainable energy technologies.

Electronic Supplementary Material

Download File(s)
6775_ESM.pdf (1.6 MB)

References

[1]

Wang, A. J.; Dou, Y. Q.; Yang, X.; Wang, Q.; Sudi, M. S.; Zhao, L.; Shang, D. H.; Zhu, W. H.; Ren, J. S. Efficient oxygen evolution reaction from iron-molybdenum nitride/molybdenum oxide heterostructured composites. Dalton Trans. 2023, 52, 11234–11242.

[2]

Zhang, R.; Liu, W. S.; Zhang, F. M.; Yang, Z. D.; Zhang, G. L.; Zeng, X. C. COF-C4N nanosheets with uniformly anchored single metal sites for electrocatalytic OER: From theoretical screening to target synthesis. Appl. Catal. B: Environ. 2023, 325, 122366.

[3]

Zhang, Y.; Lu, J. D.; Zhang, G. X.; Zhu, R. M.; Pang, H. Ternary alloy and metal oxides embedded in yolk-shell polyhedrons as bifunctional oxygen electrocatalyst. Rare Met. 2024, 43, 478–488.

[4]

Wang, P.; Zhao, R. Y.; Zhang, F. T.; Wang, J. J.; Han, B. X.; Liu, Z. M. Interface engineered Co, Ni, Fe, Cu oxide hybrids with biphasic structures for water splitting with enhanced activity. J. Colloid Interface Sci. 2022, 609, 149–157.

[5]

Liu, Y.; Yang, Y.; Chen, B.; Li, X.; Guo, M. M.; Yang, Y. X.; Xu, K.; Yuan, C. L. Highly mesoporous cobalt-hybridized 2D Cu3P nanosheet arrays as boosting Janus electrocatalysts for water splitting. Inorg. Chem. 2021, 60, 18325–18336.

[6]

Liu, M. H.; Xu, Q.; Miao, Q. Y.; Yang, S.; Wu, P.; Liu, G. J.; He, J.; Yu, C. B.; Zeng, G. F. Atomic Co-N4 and Co nanoparticles confined in COF@ZIF-67 derived core–shell carbon frameworks: Bifunctional non-precious metal catalysts toward the ORR and HER. J. Mater. Chem. A 2022, 10, 228–233.

[7]

Perumal, S.; Lim, T.; Seenivasan, S.; Seo, J. Electrocatalytic oxygen evolution reaction at IrO x supported by Ni/Co-ZIF-67: Controlled ratio of metallic Ir and Ir3+ states. Appl. Surf. Sci. 2022, 604, 154553.

[8]

Liang, C. B.; Zhang, W.; Liu, C. L.; He, J.; Xiang, Y.; Han, M. J.; Tong, Z. W.; Liu, Y. Q. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 2023, 471, 144500.

[9]

Xue, J. J.; Yang, F.; Jin, J.; Li, Y.; Wu, D.; Yang, G. P.; Wang, Y. Y. Design and synthesis of four newly water-stable Pb-based heterometallic organic frameworks: How do the second metals (Zn, Cd, Co, and Mn) optimize their fluorescent and catalytic properties. Cryst. Growth Des. 2022, 22, 2628–2636.

[10]
Xie, X, B.; Wang, H. S.; Kimura, H.; Ni, C.; Du, W.; Wu, G. L. NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater., in press, DOI: 10.1007/s12613-024-2880-1.
[11]

Xi, C.; Xu, W. X.; Zhou, S. B.; Wang, Y. C.; Han, S.; Jiang, J. B. Heterogeneous interface construction of P-doped MoS2 based on the N-doped graphene oxide aerogels for efficient hydrogen evolution. Int. J. Hydrogen Energy 2024, 58, 1596–1607.

[12]

Zhao, T. B.; Jia, Z. R.; Liu, J. K.; Zhang, Y.; Wu, G. L.; Yin, P. F. Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers. Nano-Micro Lett. 2024, 16, 6.

[13]

Xiang, L. L.; Darboe, A. K.; Luo, Z. H.; Qi, X. S.; Shao, J. J.; Ye, X. J.; Liu, C. S.; Sun, K.; Qu, Y. P.; Xu, J. et al. Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: A combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 215.

[14]

Zhao, X. Y.; Liu, K. K.; Guo, F. B.; He, Z. Y.; Zhang, L. X.; Lei, S. W.; Li, H. D.; Cheng, Y. K.; Yang, L. Meta-position synergistic effect induced by Ni-Mo co-doped WSe2 to enhance the hydrogen evolution reaction. Dalton Trans. 2022, 51, 11758–11767.

[15]

Guo, Y.; Yang, S.; Xu, Q.; Wu, P.; Jiang, Z.; Zeng, G. F. Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon towards efficient oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 13625–13630.

[16]

Sun, T.; Mitchell, S.; Li, J.; Lyu, P.; Wu, X. B.; Pérez-Ramírez, J.; Lu J. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv. Mater. 2021, 33, 2003075.

[17]

Xiao, J. X.; Zhan, B. B.; He, M. K.; Qi, X. S.; Gong, X.; Yang, J. L.; Qu, Y. P.; Ding, J. F.; Zhong, W.; Gu, J. W. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2024, 34, 2316722.

[18]

He, M. K.; Hu, J. W.; Yan, H.; Zhong, X.; Zhang, Y. L.; Liu, P. B.; Kong, J.; Gu, J. W. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 2024, 34, 202316691.

[19]
Wang, S. S.; Feng, D. Y.; Zhang, Z. M.; Liu, X.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci., in press, DOI: 10.1007/s10118-024-3098-4.
[20]

Zhao, X. L.; Liu, C. L.; He, J.; Zhang, W.; Duan, X. Y.; Liang, C. B. Graphene rubber toward high content and energy saving enabled by spray drying. Diam. Relat. Mater. 2024, 141, 110594.

[21]

Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; Woo, T.; Kurungot, S.; Vaidhyanathan, R. Low-overpotential electrocatalytic water splitting with noble-metal-free nanoparticles supported in a sp3 N-rich flexible COF. Adv. Energy Mater. 2016, 6, 1600110.

[22]

Li, Z. L.; Sheng, L.; Hsueh, C. H.; Wang, X. L.; Cui, H.; Gao, H. Q.; Wu, Y. Z.; Wang, J. L.; Tang, Y. P.; Xu, H. et al. Three-dimensional covalent organic frameworks with hea topology. Chem. Mater. 2021, 33, 9618–9623.

[23]

Xin, H. L.; Zhou, S. N.; Xu, S. Y.; Zhai, W. R.; Liu, S.; Liu, S. Y.; Wang, Z. J.; Lu, X. Q.; Wei, S. X. Functionalized linker to form high-symmetry adsorption sites in micropore COF for CO2 capture and separation: Insight from GCMC simulations. J. Mater. Sci. 2022, 57, 6282–6292.

[24]

Yan, T. A.; Tong, M. M.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. Machine learning-assisted computational exploration of the optimal loading of IL in IL/COF composites for carbon dioxide capture. J. Mater. Chem. A 2023, 11, 14911–14920.

[25]

Cai, M. K.; Li, Y. L.; Liu, Q. L.; Xue, Z. Q.; Wang, H. P.; Fan, Y. N.; Zhu, K. L.; Ke, Z. F.; Su, C. Y.; Li, G. Q. One-step construction of hydrophobic MOFs@COFs core–shell composites for heterogeneous selective catalysis. Adv. Sci. 2019, 6, 1802365.

[26]

Zhao, Y. X.; Yang, Y. J.; Xia, T.; Tian, H.; Li, Y. P.; Sui, Z. Y.; Yuan, N.; Tian, X. L.; Chen, Q. Pyrimidine-functionalized covalent organic framework and its cobalt complex as an efficient electrocatalyst for oxygen evolution reaction. ChemSusChem, 2021, 14, 4556–4562.

[27]

Wang, X.; Sun, L.; Zhou, W.; Yang, L.; Ren, G. Q.; Wu, H.; Deng, W. Q. Iron single-atom catalysts confined in covalent organic frameworks for efficient oxygen evolution reaction. Cell Rep. Phys. Sci. 2022, 3, 100804.

[28]

Charles-Blin, Y.; Kondo, T.; Wu, Y.; Bandow, S.; Awaga, K. Salt-assisted pyrolysis of covalent organic framework for controlled active nitrogen functionalities for oxygen reduction reaction. Bull. Chem. Soc. Jpn. 2022, 95, 972–977.

[29]

Wang, X. T.; Lin, X. F.; Yu, D. S. Metal-containing covalent organic framework: A new type of photo/electrocatalyst. Rare Met. 2022, 41, 1160–1175.

[30]

Miao, Q. Y.; Yang, S.; Xu, Q.; Liu, M. H.; Wu, P.; Liu, G. J.; Yu, C. B.; Jiang, Z.; Sun, Y. H.; Zeng, G. F. Constructing synergistic Zn-N4 and Fe-N4O dual-sites from the COF@MOF derived hollow carbon for oxygen reduction reaction. Small Struct. 2022, 3, 2100225.

[31]

Liu, L. L.; He, Q. F.; Dong, S. J.; Wang, M. H.; Song, Y. Q.; Diao, H.; Yuan, D. Building synergistic multiple active sites in branch-leaf nanostructured carbon nanofiber derived from MOF/COF hybrid for flexible wearable Zn-air battery. J. Colloid Interface Sci. 2024, 666, 35–46.

[32]

Li, W.; Wang, J. Y.; Chen, J. X.; Chen, K.; Wen, Z. H.; Huang, A. S. Core–shell carbon-based bifunctional electrocatalysts derived from COF@MOF hybrid for advanced rechargeable Zn-air batteries. Small 2022, 18, 2202018.

[33]

Zhuang, G. L.; Gao, Y. F.; Zhou, X.; Tao, X. Y.; Luo, J. M.; Gao, Y. J.; Yan, Y. L.; Gao, P. Y.; Zhong, X.; Wang, J. G. ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chem. Eng. J. 2017, 330, 1255–1264.

[34]

Shu, P. F.; Peng, Q.; Luo, T. T.; Ding, J. F.; Gong, X.; Zhou, J.; Yu, Y. D.; Qi, X. S.; Sun, Z. M. Bidirectional electron transfer boosts Li-CO2 electrochemistry. J. Mater. Chem. A 2024, 12, 6515–6526.

[35]

Bai, J. W.; Liu, X. C.; Guo, W. P.; Lei, T. Y.; Teng, B. T.; Xiang, H. W.; Wen, X. D. An efficient way to model complex iron carbides: A benchmark study of DFTB2 against DFT. J. Phys. Chem. A 2023, 127, 2071–2080.

[36]

Kumar, P.; Kannimuthu, K.; Zeraati, A. S.; Roy, S.; Wang, X.; Wang, X. Y.; Samanta, S.; Miller, K. A.; Molina, M.; Trivedi, D. et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 8052–8063.

[37]

Chen, C. L.; Sun, M. Z.; Zhang, F.; Li, H. J.; Sun, M. R.; Fang, P.; Song, T. L.; Chen, W. X.; Dong, J. C.; Rosen, B. et al. Adjacent Fe Site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 2023, 16, 1685–1696.

[38]

Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst. Adv. Energy Mater. 2016, 6, 1601189.

[39]

Zhu, Z. G.; Xu, Y.; Qi, B. Y.; Zeng, G. F.; Wu, P.; Liu, G. J.; Wang, W.; Cui, F. Y.; Sun, Y. H. Adsorption-intensified degradation of organic pollutants over bifunctional α-Fe@carbon nanofibres. Environ. Sci.: Nano 2017, 4, 302–306.

[40]

Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.

[41]

Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

[42]

Zhan, B. B.; Hao, Y. L.; Qi, X. S.; Qu, Y. P.; Ding, J. F.; Yang, J. L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res. 2024, 17, 927–938.

[43]

Zhang, C. C.; Yang, H.; Zhong, D.; Xu, Y.; Wang, Y. Z.; Yuan, Q.; Liang, Z. Z.; Wang, B.; Zhang, W.; Zheng, H. Q. et al. A yolk-shell structured metal-organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 9536–9544.

[44]

Li, M.; Liu, Z. W.; Wang, F.; Xuan, J. J. The influence of the type of N dopping on the performance of bifunctional N-doped ordered mesoporous carbon electrocatalysts in oxygen reduction and evolution reaction. J. Energy Chem. 2017, 26, 422–427.

[45]

Lv, Q.; Si, W. Y.; He, J. J.; Sun, L.; Zhang, C. F.; Wang, N.; Yang, Z.; Li, X. D.; Wang, X.; Deng, W. Q. et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 2018, 9, 3376.

[46]

Abid, A. G.; Gouadria, S.; Khosa, R. Y.; Aman, S.; Rashid, A. R.; Manzoor, S.; Chughtai, A. H.; Ahmad, N.; Hua, R. M.; Ashiq, M. N. Pressure-driven fabrication of Zn-doped Co3C@carbon nano-onions for robust oxygen evolution reaction. Energy Fuels 2023, 37, 2255–2261.

[47]

Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

[48]

Li, H.; Wu, G. Y.; Cheng, G. J.; Shuai, Y.; Liu, S. C.; Liu, Y. CoNi nanoalloys embedded in N-doped carbon nanofibers derived from layered bimetal-organic framework and as efficient oxygen electrocatalyst. J. Alloys Compd. 2021, 888, 161588.

[49]

Ahsan, A.; Santiago, A. R. P.; Hong, Y.; Zhang, N.; Cano, M.; Rodriguez-Castellon, E.; Echegoyen, L.; Sreenivasan, S. T.; Noveron, J. C. Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions. J. Am. Chem. Soc. 2020, 142, 14688–14701.

[50]

Peng, Q.; Zhou, J.; Chen, J. T.; Zhang, T.; Sun, Z. M. Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell. J. Mater. Chem. A 2019, 7, 26062–26070.

[51]

Jiang, W. D.; Tao, Y. H.; Ma, J.; Liu, X. J.; Zhu, S.; Hao, W. J.; Xu, Q. J.; Fan, J. C. Interfacial electronic modulation on nickel cobaltite/black phosphorus heterostructures for boosting the electrocatalytic oxygen evolution reaction. ACS Sustain. Chem. Eng. 2023, 11, 6629–6640.

[52]

Roldán, R.; López-Sancho, M. P.; Guinea, F. Effect of electron-electron interaction on the Fermi surface topology of doped graphene. Phys. Rev. B 2008, 77, 115410.

Nano Research
Pages 7068-7076
Cite this article:
Liu S, Shuai Y, Qi X, et al. Unlocking high-efficiency oxygen evolution reaction through Co-N coordination engineering in Co@N-doped porous carbon core–shell nanoparticles. Nano Research, 2024, 17(8): 7068-7076. https://doi.org/10.1007/s12274-024-6775-2
Topics:
Metrics & Citations  
Article History
Copyright
Return