AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Therapeutic nucleic acids in regenerative medicine and tissue repair

Qimanguli Saiding( )Duotian QinSoohwan AnDylan Neal PatelMuhammad Muzamil KhanNa KongWei Tao( )
Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
Show Author Information

Graphical Abstract

This review article explores the applications of nucleic acids in regenerative medicine, highlighting the importance of biomaterial-based gene delivery systems for stable and localized delivery of therapeutic nucleic acids, and discusses the latest developments, mechanisms, limitations, and future directions for nucleic acid-based therapeutics.

Abstract

In the vanguard of biomedical innovation, regenerative medicine emerges as a transformative paradigm, concentrating its efforts on rectifying tissue deficits and functional aberrations in patients through the strategic augmentation of endogenous cellular processes. Central to this approach is nucleic acid therapy, which offers a novel pathway for tissue regeneration by modulating key signaling pathways. As one of the most effective ways to regulate cell function, nucleic acids are crucial for various tissue regeneration; however, their in vivo therapeutic applications face substantial challenges, including nuclease degradation, cell membrane impermeability, and targeted intracellular transport. Biomaterial-based gene delivery systems offer a solution for stable and localized drug delivery by enabling the controlled overexpression of therapeutic nucleic acids, producing functional regulatory agents. This review presents examples of nucleic acid applications in regenerative medicine, highlighting the synergy between nucleic acids and biomaterial technologies. It underlines the importance of nucleic acid delivery techniques, the choice of therapeutic nucleic acids, and biomaterials for advancing tissue repair. The latest developments in designing nucleic acid biomaterial-based delivery vehicles are explored, the mechanism of nucleic acids in tissue regeneration is elucidated, and their limitations are discussed while considering future directions for the clinical translation of nucleic acid-based therapeutics.

References

[1]

Mao, J. Y.; Saiding, Q. M. G. L.; Qian, S. T.; Liu, Z. M.; Zhao, B. F.; Zhao, Q. Y.; Lu, B. L.; Mao, X. Y.; Zhang, L. C.; Zhang, Y. G. et al. Reprogramming stem cells in regenerative medicine. Smart Med. 2022, 1, e20220005.

[2]

Zhang, Y. X.; Xu, Y. T.; Kong, H. M.; Zhang, J. B.; Chan, H. F.; Wang, J. S.; Shao, D.; Tao, Y.; Li, M. Q. Microneedle system for tissue engineering and regenerative medicine. Exploration 2023, 3, 20210170.

[3]

Lin, F.; Li, Y. H.; Cui, W. G. Injectable hydrogel microspheres in cartilage repair. Biomed. Technol. 2023, 1, 18–29.

[4]

Nandhini, J.; Karthikeyan, E.; Rajeshkumar, S. Nanomaterials for wound healing: Current status and futuristic frontier. Biomed. Technol. 2024, 6, 26–45.

[5]

Qin, M. L.; Jin, J.; Saiding, Q. M. G. L.; Xiang, Y.; Wang, Y.; Sousa, F.; Sarmento, B.; Cui, W. G.; Chen, X. L. In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair. J. Control. Release 2020, 322, 375–389.

[6]

Webber, M. J.; Khan, O. F.; Sydlik, S. A.; Tang, B. C.; Langer, R. A perspective on the clinical translation of scaffolds for tissue engineering. Ann. Biomed. Eng. 2015, 43, 641–656.

[7]

Langer, R.; Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 1976, 263, 797–800.

[8]

Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.

[9]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[10]

Raimondo, T. M.; Reed, K.; Shi, D.; Langer, R.; Anderson, D. G. Delivering the next generation of cancer immunotherapies with RNA. Cell 2023, 186, 1535–1540.

[11]

Liu, G. W.; Guzman, E. B.; Menon, N.; Langer, R. S. Lipid nanoparticles for nucleic acid delivery to endothelial cells. Pharm. Res. 2023, 40, 3–25

[12]

Y. S.; Zhen, X. Y.; Zhang, Y. M.; Li, Y. J.; Koo, S.; Saiding, Q. M. G. L.; Kong, N.; Liu, G.; Chen, W.; Tao, W. Correction to chemically modified platforms for better RNA therapeutics. Chem. Rev. 2024, 124, 6690–6692

[13]

H.; Song, C. Q.; Dorkin, J. R.; Zhu, L. H.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328–333

[14]

Chen, L. W.; Liu, Y. F.; Guo, W. S.; Liu, Z. B. Light responsive nucleic acid for biomedical application. Exploration 2022, 2, 20210099.

[15]

Jo, J. I.; Gao, J. Q.; Tabata, Y. Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen. Ther. 2019, 11, 123–130.

[16]

Balmayor, E. R. Synthetic mRNA—Emerging new class of drug for tissue regeneration. Curr. Opin. Biotechnol. 2022, 74, 8–14.

[17]

Huang, X. M.; Li, L. Y.; Chen, Z. X.; Yu, H. Y.; You, X. R.; Kong, N.; Tao, W.; Zhou, X. T.; Huang, J. H. Nanomedicine for the detection and treatment of ocular bacterial infections. Adv. Mater. 2023, 35, 2302431.

[18]

Zhuang, Y. P.; Cui, W. G. Biomaterial-based delivery of nucleic acids for tissue regeneration. Adv. Drug Deliv. Rev. 2021, 176, 113885.

[19]

Nishikawa, M. Nucleic acid drugs and DNA-based delivery systems. Drug Discov. Ther. 2016, 10, 271–272.

[20]

Betz, V. M.; Kochanek, S.; Rammelt, S.; Müller, P. E.; Betz, O. B.; Messmer, C. Recent advances in gene-enhanced bone tissue engineering. J. Gene Med. 2018, 20, e3018.

[21]

Raftery, R. M.; Walsh, D. P.; Castaño, I. M.; Heise, A.; Duffy, G. P.; Cryan, S. A.; O'Brien, F. J. Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: Challenges, progress and future perspectives. Adv. Mater. 2016, 28, 5447–5469.

[22]

Huang, X. G.; Kong, N.; Zhang, X. C.; Cao, Y. H.; Langer, R.; Tao, W. The landscape of mRNA nanomedicine. Nat. Med. 2022, 28, 2273–2287.

[23]

Gonzalez-Fernandez, T.; Kelly, D. J.; O'Brien, F. J. Controlled non-viral gene delivery in cartilage and bone repair: Current strategies and future directions. Adv. Ther. 2018, 1, 1800038.

[24]

Saiding, Q. M. G. L.; Zhang, Z. Y.; Chen, S. Y.; Xiao, F.; Chen, Y. M.; Li, Y. J.; Zhen, X. Y.; Khan, M. M.; Chen, W.; Koo, S. et al. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Adv. Drug Deliv. Rev. 2023, 203, 115116.

[25]

Xiao, Y. F.; Tang, Z. M.; Huang, X. G.; Chen, W.; Zhou, J.; Liu, H. J.; Liu, C.; Kong, N.; Tao, W. Emerging mRNA technologies: Delivery strategies and biomedical applications. Chem. Soc. Rev. 2022, 51, 3828–3845.

[26]

Kubiatowicz, L. J.; Mohapatra, A.; Krishnan, N.; Fang, R. H.; Zhang, L. F. mRNA nanomedicine: Design and recent applications. Exploration 2022, 2, 20210217

[27]

Sharma, P.; Kumar, A.; Agarwal, T.; Dey, A. D.; Moghaddam, F. D.; Rahimmanesh, I.; Ghovvati, M.; Yousefiasl, S.; Borzacchiello, A.; Mohammadi, A. et al. Nucleic acid-based therapeutics for dermal wound healing. Int. J. Biol. Macromol. 2022, 220, 920–933.

[28]

Kelly, D. C.; Raftery, R. M.; Curtin, C. M.; O'Driscoll, C. M.; O'Brien, F. J. Scaffold-based delivery of nucleic acid therapeutics for enhanced bone and cartilage repair. J. Orthop. Res. 2019, 37, 1671–1680.

[29]

Wang, X.; Song, X. B.; Li, T.; Chen, J. J.; Cheng, G. T.; Yang, L.; Chen, C. Aptamer-functionalized bioscaffold enhances cartilage repair by improving stem cell recruitment in osteochondral defects of rabbit knees. Am. J. Sports Med. 2019, 47, 2316–2326.

[30]

Li, H.; Zhao, T. Y.; Cao, F. Y.; Deng, H. Y.; He, S. L.; Li, J. W.; Liu, S. Y.; Yang, Z.; Yuan, Z. G.; Guo, Q. Y. Integrated bioactive scaffold with aptamer-targeted stem cell recruitment and growth factor-induced pro-differentiation effects for anisotropic meniscal regeneration. Bioeng. Transl. Med. 2022, 7, e10302.

[31]

Winkle, M.; El-Daly, S. M.; Fabbri, M.; Calin, G. A. Noncoding RNA therapeutics—Challenges and potential solutions. Nat. Rev. Drug Discov. 2021, 20, 629–651.

[32]

Guo, S.; Zhang, M. J.; Huang, Y. Y. Three 'E' challenges for siRNA drug development. Trends Mol. Med. 2024, 30, 13–24.

[33]

Balmayor, E. R.; Evans, C. H. RNA therapeutics for tissue engineering. Tissue Eng. Part A 2019, 25, 9–11.

[34]

Ma, C. C.; Wang, Z. L.; Xu, T.; He, Z. Y.; Wei, Y. Q. The approved gene therapy drugs worldwide: From 1998 to 2019. Biotechnol. Adv. 2020, 40, 107502.

[35]

Damase, T. R.; Sukhovershin, R.; Boada, C.; Taraballi, F.; Pettigrew, R. I.; Cooke, J. P. The limitless future of RNA therapeutics. Front. Bioeng. Biotechnol. 2021, 9, 628137.

[36]

Kulkarni, J. A.; Witzigmann, D.; Thomson, S. B.; Chen, S.; Leavitt, B. R.; Cullis, P. R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 2021, 16, 630–643.

[37]

Gupta, A.; Andresen, J. L.; Manan, R. S.; Langer, R. Nucleic acid delivery for therapeutic applications. Adv. Drug Deliv. Rev. 2021, 178, 113834.

[38]

Teo, P. Y.; Cheng, W.; Hedrick, J. L.; Yang, Y. Y. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv. Drug Deliv. Rev. 2016, 98, 41–63.

[39]

Costa, D.; Valente, A. J. M.; Miguel, M. G.; Queiroz, J. Plasmid DNA hydrogels for biomedical applications. Adv. Colloid Interface Sci. 2014, 205, 257–264.

[40]

Watkins, L. R.; Chavez, R. A.; Landry, R.; Fry, M.; Green-Fulgham, S. M.; Coulson, J. D.; Collins, S. D.; Glover, D. K.; Rieger, J.; Forsayeth, J. R. Targeted interleukin-10 plasmid DNA therapy in the treatment of osteoarthritis: Toxicology and pain efficacy assessments. Brain Behav. Immun. 2020, 90, 155–166.

[41]

Rohner, E.; Yang, R.; Foo, K. S.; Goedel, A.; Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 2022, 40, 1586–1600.

[42]

Ralvenius, W. T.; Andresen, J. L.; Huston, M. M.; Penney, J.; Bonner, J. M.; Fenton, O. S.; Langer, R.; Tsai, L. H. Nanoparticle-mediated delivery of anti-PU.1 siRNA via localized intracisternal administration reduces neuroinflammation. Adv. Mater. 2024, 36, 2309225.

[43]

Tao, W.; Peppas, N. A. Robotic pills for gastrointestinal-tract-targeted oral mRNA delivery. Matter 2022, 5, 775–777.

[44]

Agrawal, S. RNA therapeutics are stepping out of the maze. Trends Mol. Med. 2020, 26, 1061–1064.

[45]

Li, D. F.; Liu, Q. S.; Yang, M. F.; Xu, H. M.; Zhu, M. Z.; Zhang, Y.; Xu, J.; Tian, C. M.; Yao, J.; Wang, L. S. et al. Nanomaterials for mRNA-based therapeutics: Challenges and opportunities. Bioeng. Transl. Med. 2023, 8, e10492.

[46]

Poleganov, M. A.; Eminli, S.; Beissert, T.; Herz, S.; Moon, J. I.; Goldmann, J.; Beyer, A.; Heck, R.; Burkhart, I.; Barea Roldan, D. et al. Efficient reprogramming of human fibroblasts and blood-derived endothelial progenitor cells using nonmodified RNA for reprogramming and immune evasion. Hum. Gene Ther. 2015, 26, 751–766.

[47]

Warren, L.; Lin, C. mRNA-based genetic reprogramming. Mol. Ther. 2019, 27, 729–734

[48]

Chen, S. Y.; Huang, X. G.; Xue, Y. E.; Álvarez-Benedicto, E.; Shi, Y. S.; Chen, W.; Koo, S.; Siegwart, D. J.; Dong, Y. Z.; Tao, W. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Primers 2023, 3, 63

[49]

L.; Berraondo, P.; Jericó, D.; Guey, L. T.; Sampedro, A.; Frassetto, A.; Benenato, K. E.; Burke, K.; Santamaría, E.; Alegre, M. et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat. Med. 2018, 24, 1899–1909

[50]

A. K. M. A.; Dewerth, A.; Antony, J. S.; Riethmüller, J.; Schweizer, G. R.; Weinmann, P.; Latifi, N.; Yasar, H.; Pedemonte, N.; Sondo, E. et al. Chemically modified h CFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci. Rep. 2018, 8, 16776

[51]

Setten, R. L.; Rossi, J. J.; Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019, 18, 421–446.

[52]

Malcolm, D. W.; Wang, Y. C.; Overby, C.; Newman, M.; Benoit, D. S. W. Delivery of RNAi-based therapeutics for bone regeneration. Curr. Osteoporos. Rep. 2020, 18, 312–324.

[53]

Beavers, K. R.; Nelson, C. E.; Duvall, C. L. MiRNA inhibition in tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev. 2015, 88, 123–137.

[54]

Li, W.; Qiu, J. H.; Li, X. L.; Aday, S.; Zhang, J. D.; Conley, G.; Xu, J.; Joseph, J.; Lan, H. Y.; Langer, R. et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci. Adv. 2021, 7, eabd6889.

[55]

Wang, Y. W.; Liou, N. H.; Cherng, J. H.; Chang, S. J.; Ma, K. H.; Fu, E.; Liu, J. C.; Dai, N. T. siRNA-targeting transforming growth factor-β type I receptor reduces wound scarring and extracellular matrix deposition of scar tissue. J. Invest. Dermatol. 2014, 134, 2016–2025.

[56]

Geary, R. S.; Norris, D.; Yu, R.; Bennett, C. F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 2015, 87, 46–51.

[57]

Krishnan, A. V.; Mishra, D. Antisense oligonucleotides: A unique treatment approach. Indian Pediatr. 2020, 57, 165–171.

[58]

Lam, J. K.; Chow, M. Y. T.; Zhang, Y.; Leung, S. W. S. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids 2015, 4, e252.

[59]

Yi, Y. F.; Feng, C.; Yu, M.; Mei, L.; Wu, M. Y.; Tao, W. Peptide-based siRNA delivery system for tumor vascular normalization and gene silencing in 4T1 cells. STAR Protoc. 2023, 4, 102138.

[60]

Wang, Z.; Cui, W. G. CRISPR-Cas system for biomedical diagnostic platforms. View 2020, 1, 20200008

[61]

Zou, Y.; Sun, X. H.; Yang, Q. S.; Zheng, M.; Shimoni, O.; Ruan, W. M.; Wang, Y. B.; Zhang, D. Y.; Yin, J. L.; Huang, X. G. et al. Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci. Adv. 2022, 8, eabm8011.

[62]

Hori, Y.; Engel, C.; Kobayashi, T. Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat. Rev. Mol. Cell Biol. 2023, 24, 414–429.

[63]

Shi, J. C.; Zhou, T.; Chen, Q. Exploring the expanding universe of small RNAs. Nat. Cell Biol. 2022, 24, 415–423.

[64]

Toden, S.; Zumwalt, T. J.; Goel, A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188491.

[65]

Ning, Y.; Hu, J.; Lu, F. G. Aptamers used for biosensors and targeted therapy. Biomed. Pharmacother. 2020, 132, 110902.

[66]

Luo, Z. H.; Chen, S. M.; Zhou, J.; Wang, C.; Li, K.; Liu, J.; Tang, Y. J.; Wang, L. Q. Application of aptamers in regenerative medicine. Front. Bioeng. Biotechnol. 2022, 10, 976960.

[67]

Nimjee, S. M.; White, R. R.; Becker, R. C.; Sullenger, B. A. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79.

[68]

Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780.

[69]

Kong, N.; Zhang, R. N.; Wu, G. W.; Sui, X. B.; Wang, J. Q.; Kim, N. Y.; Blake, S.; De, D. B.; Xie, T.; Cao, Y. H. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl. Acad. Sci. USA 2022, 119, e2112696119.

[70]

Leng, Q. P.; Chen, L. N.; Lv, Y. G. RNA-based scaffolds for bone regeneration: Application and mechanisms of mRNA, miRNA and siRNA. Theranostics 2020, 10, 3190–3205.

[71]

Xu, C. F.; Iqbal, S.; Shen, S.; Luo, Y. L.; Yang, X. Z.; Wang, J. Development of "CLAN" nanomedicine for nucleic acid therapeutics. Small 2019, 15, 1900055.

[72]

Martin, J. R.; Nelson, C. E.; Gupta, M. K.; Yu, F.; Sarett, S. M.; Hocking, K. M.; Pollins, A. C.; Nanney, L. B.; Davidson, J. M.; Guelcher, S. A. et al. Local delivery of PHD2 siRNA from ROS-degradable scaffolds to promote diabetic wound healing. Adv. Healthc. Mater. 2016, 5, 2751–2757.

[73]

Liu, C.; Shi, Q. Q.; Huang, X. G.; Koo, S.; Kong, N.; Tao, W. mRNA-based cancer therapeutics. Nat. Rev. Cancer 2023, 23, 526–543.

[74]

Steinle, H.; Weber, J.; Stoppelkamp, S.; Große-Berkenbusch, K.; Golombek, S.; Weber, M.; Canak-Ipek, T.; Trenz, S. M.; Schlensak, C.; Avci-Adali, M. Delivery of synthetic mRNAs for tissue regeneration. Adv. Drug Deliv. Rev. 2021, 179, 114007.

[75]

Liu, Y.; Wang, D. A. Viral vector-mediated transgenic cell therapy in regenerative medicine: Safety of the process. Expert Opin. Biol. Ther. 2015, 15, 559–567.

[76]

Bulcha, J. T.; Wang, Y.; Ma, H.; Tai, P. W. L.; Gao, G. P. Viral vector platforms within the gene therapy landscape. Sig. Transduct. Target. Ther. 2021, 6, 53.

[77]

Patel, S.; Athirasala, A.; Menezes, P. P.; Ashwanikumar, N.; Zou, T.; Sahay, G.; Bertassoni, L. E. Messenger RNA delivery for tissue engineering and regenerative medicine applications. Tissue Eng Part A 2019, 25, 91–112.

[78]

Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555.

[79]

Kwon, H.; Kim, M.; Seo, Y.; Moon, Y. S.; Lee, H. J.; Lee, K.; Lee, H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2018, 156, 172–193.

[80]

Halim, N. S. A.; Fakiruddin, K. S.; Ali, S. A.; Yahaya, B. H. A comparative study of non-viral gene delivery techniques to human adipose-derived mesenchymal stem cell. Int. J. Mol. Sci. 2014, 15, 15044–15060.

[81]

Córdova, L. A.; Trichet, V.; Escriou, V.; Rosset, P.; Amiaud, J.; Battaglia, S.; Charrier, C.; Berreur, M.; Brion, R.; Gouin, F. et al. Inhibition of osteolysis and increase of bone formation after local administration of siRNA-targeting RANK in a polyethylene particle-induced osteolysis model. Acta Biomater. 2015, 13, 150–158.

[82]

Mokhtarzadeh, A.; Alibakhshi, A.; Hashemi, M.; Hejazi, M.; Hosseini, V.; de la Guardia, M.; Ramezani, M. Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. J. Control. Release 2017, 245, 116–126.

[83]

te Boekhorst, B. C. M.; Jensen, L. B.; Colombo, S.; Varkouhi, A. K.; Schiffelers, R. M.; Lammers, T.; Storm, G.; Nielsen, H. M.; Strijkers, G. J.; Foged, C. et al. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J. Control. Release 2012, 161, 772–780.

[84]

Kang, J. Y.; Kim, H.; Mun, D.; Yun, N.; Joung, B. Co-delivery of curcumin and miRNA-144-3p using heart-targeted extracellular vesicles enhances the therapeutic efficacy for myocardial infarction. J. Control. Release 2021, 331, 62–73.

[85]

Tsai, S. J.; Atai, N. A.; Cacciottolo, M.; Nice, J.; Salehi, A.; Guo, C. X.; Sedgwick, A.; Kanagavelu, S.; Gould, S. J. Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity. J. Biol. Chem. 2021, 297, 101266.

[86]

Hajj, K. A.; Whitehead, K. A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056.

[87]

Laird, N. Z.; Acri, T. M.; Tingle, K.; Salem, A. K. Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions. Adv. Drug Deliv. Rev. 2021, 174, 613–627.

[88]

Magadum, A.; Kaur, K.; Zangi, L. mRNA-based protein replacement therapy for the heart. Mol. Ther. 2019, 27, 785–793

[89]

Collon, K.; Gallo, M. C.; Lieberman, J. R. Musculoskeletal tissue engineering: Regional gene therapy for bone repair. Biomaterials 2021, 275, 120901.

[90]

Deng, B.; Liu, S. M.; Wang, Y.; Ali, B.; Kong, N.; Xie, T.; Koo, S.; Ouyang, J.; Tao, W. Oral nanomedicine: Challenges and opportunities. Adv. Mater. 2024, 36, 2306081.

[91]

Piotrowski-Daspit, A. S.; Kauffman, A. C.; Bracaglia, L. G.; Saltzman, W. M. Polymeric vehicles for nucleic acid delivery. Adv. Drug Deliv. Rev. 2020, 156, 119–132.

[92]

Schulz-Siegmund, M.; Aigner, A. Nucleic acid delivery with extracellular vesicles. Adv. Drug Deliv. Rev. 2021, 173, 89–111.

[93]

Horodecka, K.; Düchler, M. CRISPR/Cas9: Principle, applications, and delivery through extracellular vesicles. Int. J. Mol. Sci. 2021, 22, 6072.

[94]

Oshchepkova, A.; Zenkova, M.; Vlassov, V. Extracellular vesicles for therapeutic nucleic acid delivery: Loading strategies and challenges. Int. J. Mol. Sci. 2023, 24, 7287.

[95]

Zhang, X.; Zhang, H. B.; Gu, J. M.; Zhang, J. Y.; Shi, H.; Qian, H.; Wang, D. Q.; Xu, W. R.; Pan, J. M.; Santos, H. A. Engineered extracellular vesicles for cancer therapy. Adv. Mater. 2021, 33, 2005709.

[96]

Geng, J. P.; Xia, X.; Teng, L.; Wang, L. D.; Chen, L. L.; Guo, X. L.; Belingon, B.; Li, J.; Feng, X. M.; Li, X. H. et al. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J. Control. Release 2022, 341, 166–183.

[97]

Ding, Y.; Zhao, X. L.; Geng, J. P.; Guo, X. L.; Ma, J. L.; Wang, H.; Liu, C. B. Intracellular delivery of nucleic acid by cell-permeable hPP10 peptide. J. Cell Physiol. 2019, 234, 11670–11678.

[98]

Kumari, A.; Pal, S.; G, B. R.; Mohny, F. P.; Gupta, N.; Miglani, C.; Pattnaik, B.; Pal, A.; Ganguli, M. Surface-engineered mucus penetrating nucleic acid delivery systems with cell penetrating peptides for the lungs. Mol. Pharm. 2022, 19, 1309–1324.

[99]

Zakeri-Milani, P.; Najafi-Hajivar, S.; Sarfraz, M.; Nokhodchi, A.; Mohammadi, H.; Montazersaheb, S.; Niazi, M.; Hemmatzadeh, M.; Soleymani-Goloujeh, M.; Baradaran, B. et al. Cytotoxicity and immunogenicity evaluation of synthetic cell-penetrating peptides for methotrexate delivery. Iran. J. Pharm. Res. 2021, 20, 506–515.

[100]

Wang, C.; Zhang, Y. B.; Dong, Y. Z. Lipid nanoparticle-mRNA formulations for therapeutic applications. Acc. Chem. Res. 2021, 54, 4283–4293.

[101]

Melamed, J. R.; Hajj, K. A.; Chaudhary, N.; Strelkova, D.; Arral, M. L.; Pardi, N.; Alameh, M. G.; Miller, J. B.; Farbiak, L.; Siegwart, D. J. et al. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J. Control. Release 2022, 341, 206–214.

[102]

Zhang, G.; Guo, B. S.; Wu, H.; Tang, T.; Zhang, B. T.; Zheng, L. Z.; He, Y. X.; Yang, Z. J.; Pan, X. H.; Chow, H. et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 2012, 18, 307–314.

[103]

Chang, D. F.; Court, K. A.; Holgate, R.; Davis, E. A.; Bush, K. A.; Quick, A. P.; Spiegel, A. J.; Rahimi, M.; Cooke, J. P.; Godin, B. Telomerase mRNA enhances human skin engraftment for wound healing. Adv. Healthc. Mater. 2024, 13, 2302029.

[104]

Zha, W. H.; Wang, J.; Guo, Z. K.; Zhang, Y. H.; Wang, Y.; Dong, S.; Liu, C.; Xing, H. L.; Li, X. S. Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles. Int. J. Pharm. 2023, 632, 122565.

[105]

Evers, M. J. W.; Du, W. J.; Yang, Q. B.; Kooijmans, S. A. A.; Vink, A.; van Steenbergen, M.; Vader, P.; de Jager, S. C. A.; Fuchs, S. A.; Mastrobattista, E. et al. Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. J. Control. Release 2022, 343, 207–216

[106]

S.; Santos, A. K.; Ferreira, H. A. S.; Costa, P. A.; Prazeres, P. H. D. M.; da Silva, N. J. A.; Guimarães, L. C.; e Silva, M. D. M.; Rodrigues Alves, M. T. R.; Viana, C. T. R. et al. Ionizable lipid nanoparticle-mediated delivery of plasmid DNA in cardiomyocytes. Int. J. Nanomedicine 2022, 2022, 2865–2881

[107]

Dong, S.; Wang, J.; Guo, Z. K.; Zhang, Y. H.; Zha, W. H.; Wang, Y.; Liu, C.; Xing, H. L.; Li, X. S. Efficient delivery of VEGFA mRNA for promoting wound healing via ionizable lipid nanoparticles. Bioorgan. Med. Chem. 2023, 78, 117135.

[108]

Aldayel, A. M.; O'Mary, H. L.; Valdes, S. A.; Li, X.; Thakkar, S. G.; Mustafa, B. E.; Cui, Z. R. Lipid nanoparticles with minimum burst release of TNF-α siRNA show strong activity against rheumatoid arthritis unresponsive to methotrexate. J. Control. Release 2018, 283, 280–289.

[109]

Tao, W; Yurdagul, A. Jr.; Kong, N.; Li, W. L.; Wang, X. B.; Doran, A. C.; Feng, C.; Wang, J. Q.; Islam, M. A.; Farokhzad, O. C. et al. siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 2020, 12, eaay1063

[110]

Nie, J. J.; Qiao, B. K.; Duan, S.; Xu, C.; Chen, B. Y.; Hao, W. J.; Yu, B. R.; Li, Y. L.; Du, J.; Xu, F. J. Unlockable nanocomplexes with self-accelerating nucleic acid release for effective staged gene therapy of cardiovascular diseases. Adv. Mater. 2018, 30, 1801570.

[111]

Kowalski, P. S.; Rudra, A.; Miao, L.; Anderson, D. G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol. Ther. 2019, 27, 710–728.

[112]

Mbatha, L. S.; Maiyo, F.; Daniels, A.; Singh, M. Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics 2021, 13, 900.

[113]

Sharma, A. R.; Lee, Y. H.; Bat-Ulzii, A.; Bhattacharya, M.; Chakraborty, C.; Lee, S. S. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J. Nanobiotechnol. 2022, 20, 501.

[114]

Lee, D.; Upadhye, K.; Kumta, P. N. Nano-sized calcium phosphate (CaP) carriers for non-viral gene deilvery. Mater. Sci. Eng. B 2012, 177, 289–302.

[115]

Lino, M. M.; Simões, S.; Vilaça, A.; Antunes, H.; Zonari, A.; Ferreira, L. Modulation of angiogenic activity by light-activatable miRNA-loaded nanocarriers. ACS Nano 2018, 12, 5207–5220.

[116]

Wei, X. Y.; Yu, S. C.; Zhang, T. H.; Liu, L. S.; Wang, X.; Wang, X. D.; Chan, Y. S.; Wang, Y. M.; Meng, S.; Chen, Y. G. MicroRNA-200 Loaded lipid nanoparticles promote intestinal epithelium regeneration in canonical MicroRNA-deficient mice. ACS Nano 2023, 17, 22901–22915.

[117]

Zhong, R. B.; Talebian, S.; Mendes, B. B.; Wallace, G.; Langer, R.; Conde, J.; Shi, J. J. Hydrogels for RNA delivery. Nat. Mater. 2023, 22, 818–831.

[118]

Cai, Z. W.; Saiding, Q. M. G. L.; Cheng, L.; Zhang, L. C.; Wang, Z.; Wang, F.; Chen, X. L.; Chen, G.; Deng, L. F.; Cui, W. G. Capturing dynamic biological signals via bio-mimicking hydrogel for precise remodeling of soft tissue. Bioact. Mater. 2021, 6, 4506–4516.

[119]

Yu, T. T.; Wang, H. F.; Zhang, Y. F.; Wang, X.; Han, B. The delivery of RNA-interference therapies based on engineered hydrogels for bone tissue regeneration. Front. Bioeng. Biotechnol. 2020, 8, 445.

[120]

Wang, P.; Huang, S. B.; Hu, Z. C.; Yang, W.; Lan, Y.; Zhu, J. Y.; Hancharou, A.; Guo, R.; Tang, B. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater. 2019, 100, 191–201

[121]

Yang, S.; Wang, F.; Han, H. J.; Santos, H. A.; Zhang, Y.; Zhang, H. B.; Wei, J.; Cai, Z. W. Fabricated technology of biomedical micro-nano hydrogel. Biomed. Technol. 2023, 2, 31–48.

[122]

Saleh, B.; Dhaliwal, H. K.; Portillo-Lara, R.; Shirzaei Sani, E.; Abdi, R.; Amiji, M. M.; Annabi, N. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing. Small 2019, 15, 1902232.

[123]

McMillan, A.; Nguyen, M. K.; Huynh, C. T.; Sarett, S. M.; Ge, P. L.; Chetverikova, M.; Nguyen, K.; Grosh, D.; Duvall, C. L.; Alsberg, E. Hydrogel microspheres for spatiotemporally controlled delivery of RNA and silencing gene expression within scaffold-free tissue engineered constructs. Acta Biomater. 2021, 124, 315–326.

[124]

Lolli, A.; Sivasubramaniyan, K.; Vainieri, M. L.; Oieni, J.; Kops, N.; Yayon, A.; van Osch, G. J. V. M. Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells. J. Control. Release 2019, 309, 220–230.

[125]

Huynh, C. T.; Nguyen, M. K.; Tonga, G. Y.; Longé, L.; Rotello, V. M.; Alsberg, E. Photocleavable hydrogels for light-triggered siRNA release. Adv. Healthc. Mater. 2016, 5, 305–310.

[126]

Nguyen, M. K.; Jeon, O.; Dang, P. N.; Huynh, C. T.; Varghai, D.; Riazi, H.; McMillan, A.; Herberg, S.; Alsberg, E. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Acta Biomater. 2018, 75, 105–114.

[127]

Nguyen, M. K.; Jeon, O.; Krebs, M. D.; Schapira, D.; Alsberg, E. Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation. Biomaterials 2014, 35, 6278–6286.

[128]

Wang, L. L.; Chung, J. J.; Li, E. C.; Uman, S.; Atluri, P.; Burdick, J. A. Injectable and protease-degradable hydrogel for siRNA sequestration and triggered delivery to the heart. J. Control. Release 2018, 285, 152–161.

[129]

Kurt, E.; Segura, T. Nucleic acid delivery from granular hydrogels. Adv. Healthc. Mater. 2022, 11, 2101867.

[130]

Yan, J. X.; Chen, R. Y.; Zhang, H.; Bryers, J. D. Injectable biodegradable chitosan-alginate 3D porous gel scaffold for mRNA vaccine delivery. Macromol. Biosci. 2019, 19, 1800242.

[131]

Noh, I.; Lee, K.; Rhee, Y. S. Microneedle systems for delivering nucleic acid drugs. J. Pharm. Investig. 2022, 52, 273–292

[132]

Y.; Tian, Y.; Yang, Z. G.; Shi, J. F.; Kwak, K. J.; Tong, Y. H.; Estania, A. P.; Cao, J. H.; Hsu, W. H.; Liu, Y. T. et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 2023, 7, 887–900

[133]

Huynh, C. T.; Zheng, Z. J.; Nguyen, M. K.; McMillan, A.; Yesilbag Tonga, G.; Rotello, V. M.; Alsberg, E. Cytocompatible catalyst-free photodegradable hydrogels for light-mediated RNA release to induce hMSC osteogenesis. ACS Biomater. Sci. Eng. 2017, 3, 2011–2023.

[134]

Sakamoto, Y.; Suehiro, F.; Akiba, I.; Nishimura, T. Supramolecular shear-thinning glycopeptide hydrogels for injectable enzyme prodrug therapy applications. Langmuir 2022, 38, 5883–5890.

[135]

Wang, L. L.; Liu, Y.; Chung, J. J.; Wang, T.; Gaffey, A. C.; Lu, M. M.; Cavanaugh, C. A.; Zhou, S.; Kanade, R.; Atluri, P. et al. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat. Biomed. Eng. 2017, 1, 983–992.

[136]

Li, Y. H.; Saiding, Q. M. G. L.; Wang, Z.; Cui, W. G. Engineered biomimetic hydrogels for organoids. Prog. Mater. Sci. 2024, 141, 101216.

[137]

Wang, J.; Yang, Q. H.; Saiding, Q. M. G. L.; Chen, L.; Liu, M. Y.; Wang, Z.; Xiang, L.; Deng, L. F.; Chen, Y. X.; Cui, W. G. Geometric angles and gene expression in cells for structural bone regeneration. Adv. Sci. (Weinh) 2023, 10, e2304111.

[138]

Wan, X. Y.; Zhao, Y. C.; Li, Z.; Li, L. L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022, 2, 20210029.

[139]

Saiding, Q. M. G. L.; Cui, W. G. Functional nanoparticles in electrospun fibers for biomedical applications. Nano Select 2022, 3, 999–1011.

[140]

Mu, J. N.; Luo, D. N.; Li, W.; Ding, Y. P. Multiscale polymeric fibers for drug delivery and tissue engineering. Biomed. Technol. 2024, 5, 60–72.

[141]

Stojanov, S.; Berlec, A. Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications. Front. Bioeng. Biotechnol. 2020, 8, 130.

[142]

Saiding, Q. M. G. L.; Jin, J.; Qin, M. L.; Cai, Z. W.; Lu, M.; Wang, F.; Cui, W. G.; Chen, X. L. Heat-shrinkable electrospun fibrous tape for restoring structure and function of loose soft tissue. Adv. Funct. Mater. 2021, 31, 2007440.

[143]

Zhou, X.; Saiding, Q. M. G. L.; Wang, X. J.; Wang, J.; Cui, W. G.; Chen, X. L. Regulated exogenous/endogenous inflammation via "inner-outer" medicated electrospun fibers for promoting tissue reconstruction. Adv. Healthc. Mater. 2022, 11, 2102534.

[144]

He, S.; Fang, J.; Zhong, C. X.; Wang, M.; Ren, F. Z. Spatiotemporal delivery of pBMP2 and pVEGF by a core-sheath structured fiber-hydrogel gene-activated matrix loaded with peptide-modified nanoparticles for critical-sized bone defect repair. Adv. Healthc. Mater. 2022, 11, 2201096.

[145]

Zheng, Y. J.; Wu, Y.; Zhou, Y.; Wu, J. X.; Wang, X. Y.; Qu, Y. C.; Wang, Y. R.; Zhang, Y. X.; Yu, Q. Photothermally activated electrospun nanofiber mats for high-efficiency surface-mediated gene transfection. ACS Appl. Mater. Interfaces 2020, 12, 7905–7914.

[146]

Jin, J.; Saiding, Q. M. G. L.; Wang, X. J.; Qin, M. L.; Xiang, Y.; Cheng, R. Y.; Cui, W. G.; Chen, X. L. Rapid extracellular matrix remodeling via gene-electrospun fibers as a “patch” for tissue regeneration. Adv. Funct. Mater. 2021, 31, 2009879.

[147]

Tahmasebi, A.; Enderami, S. E.; Saburi, E.; Islami, M.; Yaslianifard, S.; Mahabadi, J. A.; Ardeshirylajimi, A.; Soleimanifar, F.; Moghadam, A. S. Micro-RNA-incorporated electrospun nanofibers improve osteogenic differentiation of human-induced pluripotent stem cells. J. Biomed. Mater. Res. Part A 2020, 108, 377–386.

[148]

Zhang, X. J.; Li, Y.; Chen, Y. E.; Chen, J. H.; Ma, P. X. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat. Commun. 2016, 7, 10376.

[149]

Mulholland, E. J.; Ali, A.; Robson, T.; Dunne, N. J.; McCarthy, H. O. Delivery of RALA/siFKBPL nanoparticles via electrospun bilayer nanofibres: An innovative angiogenic therapy for wound repair. J. Control. Release 2019, 316, 53–65.

[150]

Saiding, Q. M. G. L.; Cai, Z. W.; Deng, L. F.; Cui, W. G. Inflammation self-limiting electrospun fibrous tape via regional immunity for deep soft tissue repair. Small 2022, 18, 2203265.

[151]

Zhang, N.; Lin, J. Q.; Lin, V. P. H.; Milbreta, U.; Chin, J. S.; Chew, E. G. Y.; Lian, M. M.; Foo, J. N.; Zhang, K. Y.; Wu, W. T. et al. A 3D fiber-hydrogel based non-viral gene delivery platform reveals that microRNAs promote axon regeneration and enhance functional recovery following spinal cord injury. Adv. Sci. (Weinh) 2021, 8, 2100805.

[152]

Shahriar, S. M. S.; Mondal, J.; Hasan, M. N.; Revuri, V.; Lee, D. Y.; Lee, Y. K. Electrospinning nanofibers for therapeutics delivery. Nanomaterials 2019, 9, 532.

[153]

Chen, B.; Lin, Z. J.; Saiding, Q. M. G. L.; Huang, Y. C.; Sun, Y.; Zhai, X. Y.; Ning, Z. Y.; Liang, H.; Qiao, W.; Yu, B. S. et al. Enhancement of critical-sized bone defect regeneration by magnesium oxide-reinforced 3D scaffold with improved osteogenic and angiogenic properties. J. Mater. Sci. Technol. 2023, 135, 186–198.

[154]

Han, X. Y.; Saiding, Q. M. G. L.; Cai, X. L.; Xiao, Y.; Wang, P.; Cai, Z. W.; Gong, X.; Gong, W. M.; Zhang, X. C.; Cui, W. G. Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds. Nano-Micro Lett. 2023, 15, 239.

[155]

Saiding, Q. M. G. L.; Chen, Y. Y.; Wang, J.; Pereira, C. L.; Sarmento, B.; Cui, W. G.; Chen, X. L. Abdominal wall hernia repair: From prosthetic meshes to smart materials. Mater. Today Bio 2023, 21, 100691.

[156]

Shende, P.; Trivedi, R. 3D printed bioconstructs: Regenerative modulation for genetic expression. Stem Cell Rev. Rep. 2021, 17, 1239–1250

[157]

Li, J. T.; Liang, D. N.; Chen, X.; Sun, W. J.; Shen, X. Applications of 3D printing in tumor treatment. Biomed. Technol. 2024, 5, 1–13.

[158]

Zhu, Y. J.; Kong, B.; Liu, R.; Zhao, Y. J. Developing biomedical engineering technologies for reproductive medicine. Smart Med. 2022, 1, e20220006.

[159]

Paolini, A.; Leoni, L.; Giannicchi, I.; Abbaszadeh, Z.; D'Oria, V.; Mura, F.; Dalla Cort, A.; Masotti, A. MicroRNAs delivery into human cells grown on 3D-printed PLA scaffolds coated with a novel fluorescent PAMAM dendrimer for biomedical applications. Sci. Rep. 2018, 8, 13888.

[160]

Jahangiri, S.; Rahimnejad, M.; Nasrollahi Boroujeni, N.; Ahmadi, Z.; Motamed Fath, P.; Ahmadi, S.; Safarkhani, M.; Rabiee, N. Viral and non-viral gene therapy using 3D (bio)printing. J. Gene Med. 2022, 24, e3458.

[161]

Li, Y. Q.; Bøtker, J.; Rantanen, J.; Yang, M. S.; Bohr, A. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes. Int. J. Pharm. 2020, 583, 119388

[162]

Gonzalez-Fernandez, T.; Rathan, S.; Hobbs, C.; Pitacco, P.; Freeman, F. E.; Cunniffe, G. M.; Dunne, N. J.; McCarthy, H. O.; Nicolosi, V.; O'Brien, F. J. et al. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. J. Control. Release 2019, 301, 13–27.

[163]

Sun, Y.; You, Y. Q.; Jiang, W. B.; Zhai, Z. J.; Dai, K. R. 3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair. Theranostics 2019, 9, 6949–6961

[164]

Pizzicannella, J.; Diomede, F.; Gugliandolo, A.; Chiricosta, L.; Bramanti, P.; Merciaro, I.; Orsini, T.; Mazzon, E.; Trubiani, O. 3D printing PLA/gingival stem cells/EVs upregulate miR-2861 and -210 during osteoangiogenesis commitment. Int. J. Mol. Sci. 2019, 20, 3256.

[165]

Moncal, K. K.; Aydin, R. S. T.; Abu-Laban, M.; Heo, D. N.; Rizk, E.; Tucker, S. M.; Lewis, G. S.; Hayes, D.; Ozbolat, I. T. Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats. Mater. Sci. Eng. C 2019, 105, 110128.

[166]

Hu, X. X.; Wang, Y. L.; Tan, Y. N.; Wang, J.; Liu, H. Y.; Wang, Y. Q.; Yang, S.; Shi, M. S.; Zhao, S. Y.; Zhang, Y. F. et al. A difunctional regeneration scaffold for knee repair based on aptamer-directed cell recruitment. Adv. Mater. 2017, 29, 1605235.

[167]

Wang, W. H.; Yeung, K. W. K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247.

[168]

Zhang, X. D.; Li, Q.; Li, L. F.; Ouyang, J.; Wang, T.; Chen, J. J.; Hu, X. Q.; Ao, Y. F.; Qin, D. T.; Zhang, L. Q. et al. Bioinspired mild photothermal effect-reinforced multifunctional fiber scaffolds promote bone regeneration. ACS Nano 2023, 17, 6466–6479.

[169]

Zhao, D.; Saiding, Q. M. G. L.; Li, Y. H.; Tang, Y. K.; Cui, W. G. Bone organoids: Recent advances and future challenges. Adv. Healthc. Mater. 2024, 13, 2302088.

[170]

Rajendran, A. K.; Amirthalingam, S.; Hwang, N. S. A brief review of mRNA therapeutics and delivery for bone tissue engineering. RSC Adv. 2022, 12, 8889–8900.

[171]

De la Vega, R. E.; Atasoy-Zeybek, A.; Panos, J. A.; Van Griensven, M.; Evans, C. H.; Balmayor, E. R. Gene therapy for bone healing: Lessons learned and new approaches. Transl. Res. 2021, 236, 1–16.

[172]

Xue, L. L.; Gong, N. Q.; Shepherd, S. J.; Xiong, X. H.; Liao, X. Y.; Han, X. X.; Zhao, G.; Song, C.; Huang, X. S.; Zhang, H. W. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 2022, 144, 9926–9937.

[173]

Peng, Y. C.; Zhuang, Y. L.; Liu, Y.; Le, H. X.; Li, D.; Zhang, M. R.; Liu, K.; Zhang, Y. B.; Zuo, J. L.; Ding, J. X. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration 2023, 3, 20210043.

[174]

Yu, Y.; Gao, Y. J.; He, L. M.; Fang, B. R.; Ge, W. H.; Yang, P.; Ju, Y. K.; Xie, X. Y.; Lei, L. J. Biomaterial-based gene therapy. MedComm 2023, 4, e259.

[175]

Oude Egberink, R.; Zegelaar, H. M.; El Boujnouni, N.; Versteeg, E. M. M.; Daamen, W. F.; Brock, R. Biomaterial-mediated protein expression induced by peptide-mRNA nanoparticles embedded in lyophilized collagen scaffolds. Pharmaceutics 2022, 14, 1619.

[176]

Leng, Q. P.; Liang, Z.; Lv, Y. G. Demineralized bone matrix scaffold modified with mRNA derived from osteogenically pre-differentiated MSCs improves bone repair. Mater. Sci. Eng. C 2021, 119, 111601.

[177]

Zhang, W.; De La Vega, R. E.; Coenen, M. J.; Müller, S. A.; Peniche Silva, C. J.; Aneja, M. K.; Plank, C.; van Griensven, M.; Evans, C. H.; Balmayor, E. R. An improved, chemically modified RNA encoding BMP-2 enhances osteogenesis in vitro and in vivo. Tissue Eng Part A 2019, 25, 131–144.

[178]

Badieyan, Z. S.; Berezhanskyy, T.; Utzinger, M.; Aneja, M. K.; Emrich, D.; Erben, R.; Schüler, C.; Altpeter, P.; Ferizi, M.; Hasenpusch, G. et al. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration. J. Control. Release 2016, 239, 137–148.

[179]

Geng, Y. N.; Duan, H. C.; Xu, L.; Witman, N.; Yan, B. Q.; Yu, Z. Y.; Wang, H. J.; Tan, Y.; Lin, L. Q.; Li, D. et al. BMP-2 and VEGF-A modRNAs in collagen scaffold synergistically drive bone repair through osteogenic and angiogenic pathways. Commun. Biol. 2021, 4, 82.

[180]

Lei, L.; Liu, Z. N.; Yuan, P. Y.; Jin, R. H.; Wang, X. D.; Jiang, T.; Chen, X. Injectable colloidal hydrogel with mesoporous silica nanoparticles for sustained co-release of microRNA-222 and aspirin to achieve innervated bone regeneration in rat mandibular defects. J. Mater. Chem. B 2019, 7, 2722–2735.

[181]

Fontana, G.; Martin, H. L.; Lee, J. S.; Schill, K.; Hematti, P.; Murphy, W. L. Mineral-coated microparticles enhance mRNA-based transfection of human bone marrow cells. Mol. Ther. Nucleic Acids 2019, 18, 455–464.

[182]

Jiang, W.; Hou, F. S.; Gu, Y.; Saiding, Q. M. G. L.; Bao, P. P.; Tang, J. C.; Wu, L.; Chen, C. M.; Shen, C. L.; Pereira, C. L. et al. Local bone metabolism balance regulation via double-adhesive hydrogel for fixing orthopedic implants. Bioact. Mater. 2022, 12, 169–184.

[183]

Li, R. Q.; Wang, H. J.; John, J. V.; Song, H. Q.; Teusink, M. J.; Xie, J. W. 3D hybrid nanofiber aerogels combining with nanoparticles made of a biocleavable and targeting polycation and MiR-26a for bone repair. Adv. Funct. Mater. 2020, 30, 2005531.

[184]

Fayed, O.; van Griensven, M.; Tahmasebi Birgani, Z.; Plank, C.; Balmayor, E. R. Transcript-activated coatings on titanium mediate cellular osteogenesis for enhanced osteointegration. Mol. Pharm. 2021, 18, 1121–1137.

[185]

Lu, G. H.; Zhao, G.; Wang, S.; Li, H. Q.; Yu, Q.; Sun, Q.; Wang, B.; Wei, L.; Fu, Z.; Zhao, Z. Y. et al. Injectable nano-micro composites with anti-bacterial and osteogenic capabilities for minimally invasive treatment of osteomyelitis. Adv. Sci. (Weinh) 2024, 11, 2306964.

[186]

Han, Y. F.; Cao, L. H.; Li, G. F.; Zhou, F. J.; Bai, L.; Su, J. C. Harnessing nucleic acids nanotechnology for bone/cartilage regeneration. Small 2023, 19, 2301996.

[187]

Zhao, X.; Hwang, N. S.; Bichara, D. A.; Saris, D. B.; Malda, J.; Vacanti, J. P.; Pomerantseva, I.; Sundback, C. A.; Langer, R.; Anderson, D. G. et al. Chondrogenesis by bone marrow-derived mesenchymal stem cells grown in chondrocyte-conditioned medium for auricular reconstruction. J. Tissue Eng. Regen. Med. 2017, 11, 2763–2773.

[188]

Lei, Y.; Zhang, Q. F.; Kuang, G. Z.; Wang, X. C.; Fan, Q. H.; Ye, F. F. Functional biomaterials for osteoarthritis treatment: From research to application. Smart Med 2022, 1, e20220014.

[189]

Zhu, J. J.; Yang, S. H.; Qi, Y. D.; Gong, Z.; Zhang, H. T.; Liang, K. Y.; Shen, P. Y.; Huang, Y. Y.; Zhang, Z.; Ye, W. L. et al. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 2022, 8, eabk0011.

[190]

He, S. J.; Fu, X. J.; Wang, L.; Xue, Y. Y.; Zhou, L.; Qiao, S. G.; An, J. Z.; Xia, T. T. Self-assemble silk fibroin microcapsules for cartilage regeneration through gene delivery and immune regulation. Small 2023, 19, 2302799.

[191]

Wu, H. Y.; Peng, Z.; Xu, Y.; Sheng, Z. X.; Liu, Y. S.; Liao, Y. G.; Wang, Y.; Wen, Y.; Yi, J. Z.; Xie, C. et al. Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development. Stem Cell Res. Ther. 2022, 13, 19.

[192]

Chang, L. H.; Wu, S. C.; Chen, C. H.; Chen, J. W.; Huang, W. C.; Wu, C. W.; Lin, Y. S.; Chen, Y. J.; Chang, J. K.; Ho, M. L. Exosomes derived from hypoxia-cultured human adipose stem cells alleviate articular chondrocyte inflammaging and post-traumatic osteoarthritis progression. Int. J. Mol. Sci. 2023, 24, 13414.

[193]

Zhang, Y. Q.; Qi, G. B.; Yan, Y. H.; Wang, C. Z.; Wang, Z.; Jiang, C.; Jiang, Z. X.; Ma, T. L.; Zhang, C.; Yan, Z. Q. Exosomes derived from bone marrow mesenchymal stem cells pretreated with decellularized extracellular matrix enhance the alleviation of osteoarthritis through miR-3473b/phosphatase and tensin homolog axis. J. Gene Med. 2023, 25, e3510.

[194]

van de Looij, S. M.; de Jong, O. G.; Vermonden, T.; Lorenowicz, M. J. Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration. J. Control. Release 2023, 355, 685–708.

[195]

Shen, K.; Duan, A.; Cheng, J. Q.; Yuan, T.; Zhou, J. C.; Song, H. H.; Chen, Z. F.; Wan, B.; Liu, J. X.; Zhang, X. et al. Exosomes derived from hypoxia preconditioned mesenchymal stem cells laden in a silk hydrogel promote cartilage regeneration via the miR-205-5p/PTEN/AKT pathway. Acta Biomater. 2022, 143, 173–188.

[196]

Cao, H. F.; Chen, M. Y.; Cui, X. L.; Liu, Y.; Liu, Y. H.; Deng, S. Y.; Yuan, T.; Fan, Y. J.; Wang, Q. G.; Zhang, X. D. Cell-free osteoarthritis treatment with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate aging chondrocytes. ACS Nano 2023, 17, 13358–13376.

[197]

Li, B.; Yang, J. Z.; Ma, L.; Li, F. F.; Tu, Z. Y.; Gao, C. Y. Fabrication of poly(lactide-co-glycolide) scaffold filled with fibrin gel, mesenchymal stem cells, and poly(ethylene oxide)- b-poly(L-lysine)/TGF-β1 plasmid DNA complexes for cartilage restoration in vivo. J. Biomed. Mater. Res. Part A 2013, 101, 3097–3108.

[198]

Cai, Y.; Wu, C. X.; Ou, Q. H.; Zeng, M. H.; Xue, S.; Chen, J. L.; Lu, Y.; Ding, C. H. Enhanced osteoarthritis therapy by nanoengineered mesenchymal stem cells using biomimetic CuS nanoparticles loaded with plasmid DNA encoding TGF-β1. Bioact. Mater. 2023, 19, 444–457.

[199]

Davidson, S. M.; Padró, T.; Bollini, S.; Vilahur, G.; Duncker, D. J.; Evans, P. C.; Guzik, T.; Hoefer, I. E.; Waltenberger, J.; Wojta, J. et al. Progress in cardiac research: From rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc. Res. 2021, 117, 2161–2174.

[200]

Chen, W.; Schilperoort, M.; Cao, Y. H.; Shi, J. J.; Tabas, I.; Tao, W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat. Rev. Cardiol. 2022, 19, 228–249.

[201]

Huang, X. G.; Liu, C.; Kong, N.; Xiao, Y. F.; Yurdagul, A. Jr.; Tabas, I.; Tao, W. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nat. Protoc. 2022, 17, 748–780.

[202]

Laina, A.; Gatsiou, A.; Georgiopoulos, G.; Stamatelopoulos, K.; Stellos, K. RNA therapeutics in cardiovascular precision medicine. Front. Physiol. 2018, 9, 953

[203]

L.; Clarke, J. C.; Yen, C.; Gregoire, F.; Albery, T.; Billger, M.; Egnell, A. C.; Gan, L. M.; Jennbacken, K.; Johansson, E. et al. Biocompatible, purified VEGF- A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in Swine. Mol. Ther. Methods Clin. Dev. 2018, 9, 330–346

[204]

Zhou, Y.; Liang, Q. J.; Wu, X. J.; Duan, S. Z.; Ge, C. L.; Ye, H.; Lu, J. H.; Zhu, R. Y.; Chen, Y. B.; Meng, F. H. et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv. Mater. 2023, 35, 2210691

[205]

Yan, C. P.; Wang, X. Z.; Wang, Q.; Li, H. Y.; Song, H. F.; Zhou, J. L.; Peng, Z. X.; Yin, W. J.; Fan, X. M.; Yang, K. et al. A novel conductive polypyrrole-chitosan hydrogel containing human endometrial mesenchymal stem cell-derived exosomes facilitated sustained release for cardiac repair. Adv. Healthc. Mater. 2024, 13, 2304207.

[206]

Yang, Q. B.; Fang, J. T.; Lei, Z. Y.; Sluijter, J. P. G.; Schiffelers, R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv. Drug Deliv. Rev. 2020, 160, 1–18.

[207]

Wang, Y.; Wu, M. P.; Guo, H. D. Modified mRNA as a treatment for myocardial infarction. Int. J. Mol. Sci. 2023, 24, 4737.

[208]

Zangi, L.; Lui, K. O.; von Gise, A.; Ma, Q.; Ebina, W.; Ptaszek, L. M.; Später, D.; Xu, H. S.; Tabebordbar, M.; Gorbatov, R. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 2013, 31, 898–907.

[209]

Yu, Z. Y.; Witman, N.; Wang, W. B.; Li, D.; Yan, B. Q.; Deng, M. W.; Wang, X. S.; Wang, H. J.; Zhou, G. D.; Liu, W. et al. Cell-mediated delivery of VEGF modified mRNA enhances blood vessel regeneration and ameliorates murine critical limb ischemia. J. Control. Release 2019, 310, 103–114.

[210]

Michalopoulos, G. K.; Bhushan, B. Liver regeneration: Biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 40–55.

[211]

Trepotec, Z.; Lichtenegger, E.; Plank, C.; Aneja, M. K.; Rudolph, C. Delivery of mRNA therapeutics for the treatment of hepatic diseases. Mol. Ther. 2019, 27, 794–802.

[212]

Huang, X. G.; Kon, E.; Han, X. X.; Zhang, X. C.; Kong, N.; Mitchell, M. J.; Peer, D.; Tao, W. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 2022, 17, 1027–1037.

[213]

Rizvi, F.; Everton, E.; Smith, A. R.; Liu, H.; Osota, E.; Beattie, M.; Tam, Y.; Pardi, N.; Weissman, D.; Gouon-Evans, V. Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA. Nat. Commun. 2021, 12, 613

[214]

F.; Lee, Y. R.; Diaz-Aragon, R.; Bawa, P. S.; So, J.; Florentino, R. M.; Wu, S. S.; Sarjoo, A.; Truong, E.; Smith, A. R. et al. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. Cell Stem Cell 2023, 30, 1640–1657.e8

[215]

Li, F. F.; Wei, H. Y.; Jin, Y. Y.; Xue, T. T.; Xu, Y. T.; Wang, H. X.; Ju, E. G.; Tao, Y.; Li, M. Q. Microfluidic fabrication of microrna-induced hepatocyte-like cells/human umbilical vein endothelial cells-laden microgels for acute liver failure treatment. ACS Nano 2023, 17, 25243–25256.

[216]

Connolly, B.; Isaacs, C.; Cheng, L.; Asrani, K. H.; Subramanian, R. R. SERPINA1 mRNA as a treatment for alpha-1 antitrypsin deficiency. J. Nucleic Acids 2018, 2018, 8247935

[217]

Apgar, J. F.; Tang, J. P.; Singh, P.; Balasubramanian, N.; Burke, J.; Hodges, M. R.; Lasaro, M. A.; Lin, L.; Miliard, B. L.; Moore, K. et al. Quantitative systems pharmacology model of hUGT1A1-modRNA encoding for the UGT1A1 enzyme to treat crigler-najjar syndrome type 1. CPT Pharmacometrics Syst. Pharmacol. 2018, 7, 404–412.

[218]

Shao, C. M.; Cao, T.; Wang, X. C.; Fan, Q. H.; Ye, F. F. Reconstruction of the alveolar-capillary barrier in vitro based on a photo-responsive stretchable Janus membrane. Smart Med. 2023, 2, e20220035.

[219]

Tang, Z. M.; You, X. R.; Xiao, Y. F.; Chen, W.; Li, Y. J.; Huang, X. G.; Liu, H. J.; Xiao, F.; Liu, C.; Koo, S. et al. Inhaled mRNA nanoparticles dual-targeting cancer cells and macrophages in the lung for effective transfection. Proc. Natl. Acad. Sci. USA 2023, 120, e2304966120.

[220]

Chow, M. Y. T.; Qiu, Y. S.; Lam, J. K. W. Inhaled RNA therapy: From promise to reality. Trends Pharmacol. Sci. 2020, 41, 715–729.

[221]

Kaczmarek, J. C.; Patel, A. K.; Kauffman, K. J.; Fenton, O. S.; Webber, M. J.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem., Int. Ed. 2016, 55, 13808–13812.

[222]

Yan, Y. F.; Xiong, H.; Zhang, X. Y.; Cheng, Q.; Siegwart, D. J. Systemic mRNA delivery to the lungs by functional polyester-based carriers. Biomacromolecules 2017, 18, 4307–4315.

[223]

Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320.

[224]

Parhiz, H.; Shuvaev, V. V.; Pardi, N.; Khoshnejad, M.; Kiseleva, R. Y.; Brenner, J. S.; Uhler, T.; Tuyishime, S.; Mui, B. L.; Tam, Y. K. et al. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J. Control. Release 2018, 291, 106–115.

[225]

Massaro, M.; Wu, S. H.; Baudo, G.; Liu, H. R.; Collum, S.; Lee, H.; Stigliano, C.; Segura-Ibarra, V.; Karmouty-Quintana, H.; Blanco, E. Lipid nanoparticle-mediated mRNA delivery in lung fibrosis. Eur. J. Pharm. Sci. 2023, 183, 106370.

[226]

Tiwari, P. M.; Vanover, D.; Lindsay, K. E.; Bawage, S. S.; Kirschman, J. L.; Bhosle, S.; Lifland, A. W.; Zurla, C.; Santangelo, P. J. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat. Commun. 2018, 9, 3999.

[227]

Nakamori, M.; Junn, E.; Mochizuki, H.; Mouradian, M. M. Nucleic acid-based therapeutics for parkinson's disease. Neurotherapeutics 2019, 16, 287–298.

[228]

Anthony, K. RNA-based therapeutics for neurological diseases. RNA Biol. 2022, 19, 176–190.

[229]

Lin, C. Y.; Perche, F.; Ikegami, M.; Uchida, S.; Kataoka, K.; Itaka, K. Messenger RNA-based therapeutics for brain diseases: An animal study for augmenting clearance of beta-amyloid by intracerebral administration of neprilysin mRNA loaded in polyplex nanomicelles. J. Control. Release 2016, 235, 268–275.

[230]

Min, H. S.; Kim, H. J.; Naito, M.; Ogura, S.; Toh, K.; Hayashi, K.; Kim, B. S.; Fukushima, S.; Anraku, Y.; Miyata, K. et al. Systemic brain delivery of antisense oligonucleotides across the blood-brain barrier with a glucose-coated polymeric nanocarrier. Angew. Chem., Int. Ed. 2020, 59, 8173–8180.

[231]

Conceição, M.; Mendonça, L.; Nóbrega, C.; Gomes, C.; Costa, P.; Hirai, H.; Moreira, J. N.; Lima, M. C.; Manjunath, N.; Pereira de Almeida, L. Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype. Biomaterials 2016, 82, 124–137.

[232]

Uchida, S.; Itaka, K.; Uchida, H.; Hayakawa, K.; Ogata, T.; Ishii, T.; Fukushima, S.; Osada, K.; Kataoka, K. In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS One 2013, 8, e56220

[233]

Abbasi, S.; Uchida, S.; Toh, K.; Tockary, T. A.; Dirisala, A.; Hayashi, K.; Fukushima, S.; Kataoka, K. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. J. Control. Release 2021, 332, 260–268.

[234]

Tanaka, H.; Nakatani, T.; Furihata, T.; Tange, K.; Nakai, Y.; Yoshioka, H.; Harashima, H.; Akita, H. In vivo introduction of mRNA encapsulated in lipid nanoparticles to brain neuronal cells and astrocytes via intracerebroventricular administration. Mol. Pharm. 2018, 15, 2060–2067

[235]

Dhaliwal, H. K.; Fan, Y. F.; Kim, J.; Amiji, M. M. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol. Pharm. 2020, 17, 1996–2005.

[236]

Yang, Z.; Yang, Y.; Xu, Y. C.; Jiang, W. Q.; Shao, Y.; Xing, J. H.; Chen, Y. B.; Han, Y. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration. Stem Cell Res. Ther. 2021, 12, 442.

[237]

Puhl, D. L.; Funnell, J. L.; Fink, T. D.; Swaminathan, A.; Oudega, M.; Zha, R. H.; Gilbert, R. J. Electrospun fiber-mediated delivery of neurotrophin-3 mRNA for neural tissue engineering applications. Acta Biomater. 2023, 155, 370–385.

[238]

Khalil, A. S.; Hellenbrand, D.; Reichl, K.; Umhoefer, J.; Filipp, M.; Choe, J.; Hanna, A.; Murphy, W. L. A localized materials-based strategy to non-virally deliver chondroitinase ABC mRNA improves hindlimb function in a rat spinal cord injury model. Adv. Healthc. Mater. 2022, 11, 2200206.

[239]

Berger, A. G.; Chou, J. J.; Hammond, P. T. Approaches to modulate the chronic wound environment using localized nucleic acid delivery. Adv. Wound Care (New Rochelle) 2021, 10, 503–528.

[240]

Huysmans, H.; Zhong, Z. F.; De Temmerman, J.; Mui, B. L.; Tam, Y. K.; Mc Cafferty, S.; Gitsels, A.; Vanrompay, D.; Sanders, N. N. Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin. Mol. Ther. Nucleic Acids 2019, 17, 867–878.

[241]

Duran-Mota, J. A.; Yani, J. Q.; Almquist, B. D.; Borrós, S.; Oliva, N. Polyplex-loaded hydrogels for local gene delivery to human dermal fibroblasts. ACS Biomater. Sci. Eng. 2021, 7, 4347–4361.

[242]

Wang, X. L.; Coradin, T.; Hélary, C. Modulating inflammation in a cutaneous chronic wound model by IL-10 released from collagen-silica nanocomposites via gene delivery. Biomater. Sci. 2018, 6, 398–406.

[243]

Singh, P.; Muhammad, I.; Nelson, N. E.; Tran, K. T. M.; Vinikoor, T.; Chorsi, M. T.; D'Orio, E.; Nguyen, T. D. Transdermal delivery for gene therapy. Drug Deliv. Transl. Res. 2022, 12, 2613–2633.

[244]

Wang, S. Y.; Kim, H.; Kwak, G.; Jo, S. D.; Cho, D.; Yang, Y.; Kwon, I. C.; Jeong, J. H.; Kim, S. H. Development of microRNA-21 mimic nanocarriers for the treatment of cutaneous wounds. Theranostics 2020, 10, 3240–3253.

[245]

Li, J. L.; Ghatak, S.; El Masry, M. S.; Das, A.; Liu, Y.; Roy, S.; Lee, R. J.; Sen, C. K. Topical lyophilized targeted lipid nanoparticles in the restoration of skin barrier function following burn wound. Mol. Ther. 2018, 26, 2178–2188.

[246]

Khalil, A. S.; Yu, X. H.; Umhoefer, J. M.; Chamberlain, C. S.; Wildenauer, L. A.; Diarra, G. M.; Hacker, T. A.; Murphy, W. L. Single-dose mRNA therapy via biomaterial-mediated sequestration of overexpressed proteins. Sci. Adv. 2020, 6, eaba2422.

[247]

Zhang, F.; Kang, Y.; Feng, L. W.; Xi, G.; Chen, W.; Kong, N.; Tao, W.; Luan, T. G.; Koo, S.; Ji, X. Y. Infected wound repair with an ultrasound-enhanced nanozyme hydrogel scaffold. Mater. Horiz. 2023, 10, 5474–5483.

[248]

Li, Y.; Song, W.; Kong, L. Z.; He, Y. H.; Li, H. Y. Injectable and microporous microgel-fiber granular hydrogel loaded with bioglass and siRNA for promoting diabetic wound healing. Small 2024, 20, 2309599.

[249]

Koh, K. J.; Liu, Y.; Lim, S. H.; Loh, X. J.; Kang, L. F.; Lim, C. Y.; Phua, K. K. L. Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Sci. Rep. 2018, 8, 11842.

[250]

Wisitrasameewong, W.; Champaiboon, C.; Surisaeng, T.; Sa-Ard-Iam, N.; Freire, M.; Pardi, N.; Pichyangkul, S.; Mahanonda, R. The impact of mRNA technology in regenerative therapy: Lessons for oral tissue regeneration. J. Dent. Res. 2022, 101, 1015–1024.

[251]

Vicente-Pascual, M.; Gómez-Aguado, I.; Rodríguez-Castejón, J.; Rodríguez-Gascón, A.; Muntoni, E.; Battaglia, L.; Del Pozo-Rodríguez, A.; Solinís Aspiazu, M. Á. Topical administration of SLN-based gene therapy for the treatment of corneal inflammation by de novo IL-10 production. Pharmaceutics 2020, 12, 584.

[252]

Devoldere, J.; Peynshaert, K.; Dewitte, H.; Vanhove, C.; De Groef, L.; Moons, L.; Özcan, S. Y.; Dalkara, D.; De Smedt, S. C.; Remaut, K. Non-viral delivery of chemically modified mRNA to the retina: Subretinal versus intravitreal administration. J. Control. Release 2019, 307, 315–330.

[253]

Melamed, J. R.; Yerneni, S. S.; Arral, M. L.; LoPresti, S. T.; Chaudhary, N.; Sehrawat, A.; Muramatsu, H.; Alameh, M. G.; Pardi, N.; Weissman, D. et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci. Adv. 2023, 9, eade1444.

[254]

Ouyang, J.; Deng, B.; Zou, B. H.; Li, Y. J.; Bu, Q. Y.; Tian, Y.; Chen, M. K.; Chen, W.; Kong, N.; Chen, T. F. et al. Oral hydrogel microbeads-mediated in situ synthesis of selenoproteins for regulating intestinal immunity and microbiota. J. Am. Chem. Soc. 2023, 145, 12193–12205.

[255]

Sugimoto, K.; Ogawa, A.; Mizoguchi, E.; Shimomura, Y.; Andoh, A.; Bhan, A. K.; Blumberg, R. S.; Xavier, R. J.; Mizoguchi, A. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 2008, 118, 534–544.

[256]

Sung, J.; Alghoul, Z.; Long, D. P.; Yang, C. H.; Merlin, D. Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: A novel therapeutic solution to treat ulcerative colitis. Biomaterials 2022, 288, 121707.

[257]

Bondue, T.; van den Heuvel, L.; Levtchenko, E.; Brock, R. The potential of RNA-based therapy for kidney diseases. Pediatr. Nephrol. 2023, 38, 327–344.

[258]

Borges, F. T.; Melo, S. A.; OÖzdemir, B. C.; Kato, N.; Revuelta, I.; Miller, C. A.; Gattone II, V. H.; 2nd; LeBleu, V. S.; Kalluri, R. TGF- β1—Containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J. Am. Soc. Nephrol. 2013, 24, 385–392.

[259]

Tang, W. M.; Panja, S.; Jogdeo, C. M.; Tang, S. Y.; Ding, L.; Yu, A.; Foster, K. W.; Dsouza, D. L.; Chhonker, Y. S.; Jensen-Smith, H.; Jang, H. S.; Boesen, E. I.; Murry, D. J.; Padanilam, B.; Oupicky, D. et al. Modified chitosan for effective renal delivery of siRNA to treat acute kidney injury. Biomaterials 2022, 285, 121562.

[260]

Hou, Y. T.; Lin, S. H.; Xia, J.; Zhang, Y.; Yin, Y. N.; Huang, M. S.; Xu, Y. J.; Yang, W.; Zhu, Y. J. Alleviation of ischemia-reperfusion induced renal injury by chemically modified SOD2 mRNA delivered via lipid nanoparticles. Mol. Ther. Nucleic Acids 2023, 34, 102067.

[261]

Yang, C. X.; Nilsson, L.; Cheema, M. U.; Wang, Y.; Froøkiaer, J.; Gao, S.; Kjems, J.; Noørregaard, R. Chitosan/siRNA nanoparticles targeting cyclooxygenase type 2 attenuate unilateral ureteral obstruction-induced kidney injury in mice. Theranostics 2015, 5, 110–123.

[262]

Zhang, J. H.; Hou, Z. Q.; Wang, X. H.; Jiang, H.; Neng, L. L.; Zhang, Y. P.; Yu, Q.; Burwood, G.; Song, J. H.; Auer, M.; Fridberger, A.; Hoa, M.; Shi, X. et al. VEGFA165 gene therapy ameliorates blood-labyrinth barrier breakdown and hearing loss. JCI Insight. 2021, 6, e143285

[263]

Mathiesen, B. K.; Miyakoshi, L. M.; Cederroth, C. R.; Tserga, E.; Versteegh, C.; Bork, P. A. R.; Hauglund, N. L.; Gomolka, R. S.; Mori, Y.; Edvall, N. K.; Rouse, S.; Møllgård, K.; Holt, J. R.; Nedergaard, M.; Canlon, B. et al. Delivery of gene therapy through a cerebrospinal fluid conduit to rescue hearing in adult mice. Sci. Transl. Med. 2023, 15, eabq3916.

[264]

Glebova, K.; Reznik, O. N.; Reznik, A. O.; Mehta, R.; Galkin, A.; Baranova, A.; Skoblov, M. siRNA technology in kidney transplantation: Current status and future potential. BioDrugs, 2014, 28, 345–361

[265]

Shah, P.; Valantine, H. A.; Agbor-Enoh, S. Transcriptomics in transplantation: More than just biomarkers of allograft rejection. Am. J. Transplant. 2021, 21, 2000–2001.

[266]

Wang, R.; Yi, L. YY.; Zhou, W. Q.; Wang, W. Y.; Wang, L. F.; Xu, L. L.; Deng, C.; He, M. R.; Xie, Y. J.; Xu, J.; Chen, Y.; Gao, T.; Jin, Q.; Zhang, L.; Xie, M. et al. Targeted microRNA delivery by lipid nanoparticles and gas vesicle-assisted ultrasound cavitation to treat heart transplant rejection. Biomater. Sci. 2023, 11, 6492–6503.

[267]

Witten, J.; Hu, Y. Z.; Langer, R.; Anderson, D. G. Recent advances in nanoparticulate RNA delivery systems. Proc. Natl. Acad. Sci. USA 2024, 121, e2307798120.

Nano Research
Pages 8942-8976
Cite this article:
Saiding Q, Qin D, An S, et al. Therapeutic nucleic acids in regenerative medicine and tissue repair. Nano Research, 2024, 17(10): 8942-8976. https://doi.org/10.1007/s12274-024-6776-1
Topics:
Part of a topical collection:

1465

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 February 2024
Revised: 21 May 2024
Accepted: 22 May 2024
Published: 13 July 2024
© Tsinghua University Press 2024
Return