AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Platelet-based bioactive systems guided precision targeting and immune regulation for cancer therapy

Xinyi Cai1,2Long Qiu2Zhenying Diao2Lintao Cai1,3( )Ting Yin2( )Hong Pan1,3( )
Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
School of pharmacy, Guangdong Medical University, Dongguan 523808, China
Sino-Euro Center of Biomedicine and Health, Shenzhen 518024, China
Show Author Information

Graphical Abstract

Platelet-based biomaterials can achieve precise drug targeting and simultaneously reshape the tumor immune microenvironment and deep tissue penetration, enabling cancer immunotherapy and combination therapy.

Abstract

The antitumor effects of conventional drug carriers are often attenuated and limited in application by biological barriers associated with tumor heterogeneity and resistance brought about by low tumor immunogenicity. With the rapid development of nanotechnology, naturally derived bioactive materials, and live cell carriers, a promising strategy emerges for targeting the tumor microenvironment (TME) for precision cancer therapy. The unique injury-targeting properties of platelets can significantly extend functional activity, which cannot be achieved with conventional nanocarriers. In this review, three strategies based on platelet-engineered materials are systematically described, namely nanoparticles for platelet membrane camouflage, engineered activated platelets, and targeted-platelets nanosystems. Platelet-based nanomaterials can effectively coordinate local and distant tumor-host crosstalk with controlled active tumor site recognition and killing effects due to the presence of specific membrane proteins on the surface and the self-secretion of a large number of particles. Further advances in platelets for effectively overcoming biological barriers and reducing immune resistance in cancer immunotherapy applications will be discussed in future clinical practice. This review provides an overview of recent research advances in platelet-based bioactive material-directed immunotherapy and chemotherapy to inform future antitumor combination therapies.

References

[1]

Blankenstein, T.; Coulie, P. G.; Gilboa, E.; Jaffee, E. M. The determinants of tumour immunogenicity. Nat. Rev. Cancer 2012, 12, 307–313.

[2]

Kost, J.; Mathiowitz, E.; Azagury, A. Advances in drug delivery and theranostics. Adv. Funct. Mater. 2021, 31, 2108838.

[3]

Gong, X.; Li, J.; Tan, T.; Wang, Z. W.; Wang, H.; Wang, Y. Q.; Xu, X. X.; Zhang, Z. W.; Li, Y. P. Emerging approaches of cell-based nanosystems to target cancer metastasis. Adv. Funct. Mater. 2019, 29, 1903441.

[4]

Yang, J. L.; Zhang, X. C.; Liu, C.; Wang, Z.; Deng, L. F.; Feng, C.; Tao, W.; Xu, X. Y.; Cui, W. G. Biologically modified nanoparticles as theranostic bionanomaterials. Prog. Mater. Sci. 2021, 118, 100768.

[5]

Alderton, G. Synthetic bacterial cancer therapy. Science 2019, 365, 459.6–460.

[6]

Finck, A. V.; Blanchard, T.; Roselle, C. P.; Golinelli, G.; June, C. H. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 2022, 28, 678–689.

[7]

van der Meijden, P. E. J.; Heemskerk, J. W. M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2019, 16, 166–179.

[8]

Donisan, T.; Balanescu, D. V.; Iliescu, G.; Marmagkiolis, K.; Iliescu, C. Acute coronary syndrome, thrombocytopenia, and antiplatelet therapy in critically ill cancer patients. In Oncologic Critical Care. 2021, 1, 1–2Nates, J. L.; Price, K. J., Eds.; Springer: Cham, 2020; pp 711–732.

[9]

Menter, D. G.; Kopetz, S.; Hawk, E.; Sood, A. K.; Loree, J. M.; Gresele, P.; Honn, K. V. Platelet “first responders” in wound response, cancer, and metastasis. Cancer Metastasis Rev. 2017, 36, 199–213.

[10]

Sierko, E.; Wojtukiewicz, M. Z. Platelets and angiogenesis in malignancy. Semin. Thromb. Hemost. 2004, 30, 95–108.

[11]

Schlesinger, M. Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol. 2018, 11, 125.

[12]

Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

[13]

Yang, F. J.; Kong, Z. Q.; Ji, Q. Y.; Li, S. M.; Sun, J.; He, Z. G.; Zhang, S. W.; Luo, C. Platelet-inspired nanotherapeutics for biomedical applications. ACS Mater. Lett. 2023, 5, 429–449.

[14]

Zhuang, J.; Gong, H.; Zhou, J. R.; Zhang, Q. Z.; Gao, W. W.; Fang, R. H.; Zhang, L. F. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv. 2020, 6, eaaz6108.

[15]

Bahmani, B.; Gong, H.; Luk, B. T.; Haushalter, K. J.; DeTeresa, E.; Previti, M.; Zhou, J. R.; Gao, W. W.; Bui, J. D.; Zhang, L. F. et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun. 2021, 12, 1999.

[16]

Wang, Y. X.; Li, Z. T.; Mo, F. Y.; Gu, Z.; Hu, Q. Y. Engineered platelets: Advocates for tumor immunotherapy. Nano Today 2021, 40, 101281.

[17]

Zhou, J. R.; Kroll, A. V.; Holay, M.; Fang, R. H.; Zhang, L. F. Biomimetic nanotechnology toward personalized vaccines. Adv. Mater. 2020, 32, 1901255.

[18]

Fan, X. Y.; Wang, K. Y.; Lu, Q.; Lu, Y. T.; Liu, F. X.; Li, L.; Li, S. H.; Ye, H.; Zhao, J.; Cao, L. P. et al. Surface-anchored tumor microenvironment-responsive protein nanogel-platelet system for cytosolic delivery of therapeutic protein in the post-surgical cancer treatment. Acta Biomater. 2022, 154, 412–423.

[19]

Yap, M. L.; McFadyen, J. D.; Wang, X. W.; Zia, N. A.; Hohmann, J. D.; Ziegler, M.; Yao, Y.; Pham, A.; Harris, M.; Donnelly, P. S. et al. Targeting activated platelets: A unique and potentially universal approach for cancer imaging. Theranostics 2017, 7, 2565–2574.

[20]

Zhao, W.; Li, T.; Long, Y.; Guo, R.; Sheng, Q. L.; Lu, Z. Z.; Li, M.; Li, J. X.; Zang, S. Y.; Zhang, Z. R. et al. Self-promoted albumin-based nanoparticles for combination therapy against metastatic breast cancer via a hyperthermia-induced “platelet bridge”. ACS Appl. Mater. Interfaces 2021, 13, 25701–25714.

[21]

Du, L. Y.; Wang, H. M.; Yang, M.; Liu, L. L.; Niu, Z. Q. Free-standing nanostructured architecture as a promising platform for high-performance lithium-sulfur batteries. Small Struct. 2020, 1, 2000047.

[22]

Yang, H. B.; Song, Y. N.; Chen, J.; Pang, Z. Q.; Zhang, N.; Cao, J. T.; Wang, Q. Z.; Li, Q. Y.; Zhang, F.; Dai, Y. X. et al. Platelet membrane-coated nanoparticles target sclerotic aortic valves in ApoE−/− mice by multiple binding mechanisms under pathological shear stress. Int. J. Nanomed. 2020, 15, 901–912.

[23]

Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 2015, 27, 7043–7050.

[24]

Jiang, Q.; Wang, K.; Zhang, X. Y.; Ouyang, B. S.; Liu, H. X.; Pang, Z. Q.; Yang, W. L. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small 2020, 16, 2001704.

[25]

Xu, Z. R.; Zhang, Y. L.; Zhou, W. X.; Wang, L. J.; Xu, G. X.; Ma, M. Z.; Liu, F. H.; Wang, Z.; Wang, Y. C.; Kong, T. T. et al. NIR-II-activated biocompatible hollow nanocarbons for cancer photothermal therapy. J. Nanobiotechnol. 2021, 19, 137.

[26]

Zhang, C.; Xia, D. L.; Liu, J. H.; Huo, D.; Jiang, X. Q.; Hu, Y. Bypassing the immunosuppression of myeloid-derived suppressor cells by reversing tumor hypoxia using a platelet-inspired platform. Adv. Funct. Mater. 2020, 30, 2000189.

[27]

Ying, M.; Zhuang, J.; Wei, X. L.; Zhang, X. X.; Zhang, Y.; Jiang, Y.; Dehaini, D.; Chen, M. C.; Gu, S. L.; Gao, W. W. et al. Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv. Funct. Mater. 2018, 28, 1801032.

[28]

Bang, K. H.; Na, Y. G.; Huh, H. W.; Hwang, S. J.; Kim, M. S.; Kim, M.; Lee, H. K.; Cho, C. W. The delivery strategy of paclitaxel nanostructured lipid carrier coated with platelet membrane. Cancers 2019, 11, 807.

[29]

Wang, H. J.; Wu, C. H.; Tong, X. W.; Chen, S. J. A biomimetic metal-organic framework nanosystem modulates immunosuppressive tumor microenvironment metabolism to amplify immunotherapy. J. Control. Release 2023, 353, 727–737.

[30]

Shang, Y. H.; Wang, Q. H.; Wu, B.; Zhao, Q. Q.; Li, J.; Huang, X. Y.; Chen, W. S.; Gui, R. Platelet-membrane-camouflaged black phosphorus quantum dots enhance anticancer effect mediated by apoptosis and autophagy. ACS Appl. Mater. Interfaces 2019, 11, 28254–28266.

[31]

Cho, M. H.; Li, Y.; Lo, P. C.; Lee, H.; Choi, Y. Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nano-Micro Lett. 2020, 12, 47.

[32]

None. Better nanoparticle targeting with P-selectin. Cancer Discov. 2016, 6, 936.

[33]

Stone, J. P.; Wagner, D. D. P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J. Clin. Invest. 1993, 92, 804–813.

[34]

Hu, Q. Y.; Qian, C. G.; Sun, W. J.; Wang, J. Q.; Chen, Z. W.; Bomba, H. N.; Xin, H. L.; Shen, Q. D.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 2016, 28, 9573–9580.

[35]

Gibbins, J.; Rana, R.; Khan, D.; Shapiro, S.; Grech, H.; Ramasamy, K. Multiple myeloma treatment is associated with enhanced platelet reactivity. Blood 2018, 132, 3300.

[36]

Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.

[37]

Kim, M. W.; Lee, G.; Niidome, T.; Komohara, Y.; Lee, R.; Park, Y. I. Platelet-like gold nanostars for cancer therapy: The ability to treat cancer and evade immune reactions. Front. Bioeng. Biotechnol. 2020, 8, 133.

[38]

Xu, L. L.; Gao, F.; Fan, F.; Yang, L. H. Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage. Biomaterials 2018, 159, 59–67.

[39]

Chai, Z. H.; Jing, C.; Liu, Y.; An, Y. L.; Shi, L. Q. Spectroscopic studies on the photostability and photoactivity of metallo-tetraphenylporphyrin in micelles. Colloid Polym. Sci. 2014, 292, 1329–1337.

[40]

Deda, D. K.; Araki, K. Nanotechnology, light and chemical action: An effective combination to kill cancer cells. J. Braz. Chem. Soc. 2015, 26, 2448–2470

[41]

Guo, W. H.; Wang, T.; Huang, C. Y.; Ning, S. P.; Guo, Q. L.; Zhang, W.; Yang, H. W.; Zhu, D. M.; Huang, Q. Q.; Qian, H. S. et al. Platelet membrane-coated C-TiO2 hollow nanospheres for combined sonodynamic and alkyl-radical cancer therapy. Nano Res. 2023, 16, 782–791

[42]

Ding, K. L.; Zheng, C. X.; Sun, L. L.; Liu, X. X.; Yin, Y. Y.; Wang, L. NIR light-induced tumor phototherapy using ICG delivery system based on platelet-membrane-camouflaged hollow bismuth selenide nanoparticles. Chin. Chem. Lett. 2020, 31, 1168–1172.

[43]

Bu, L. L.; Rao, L.; Yu, G. T.; Chen, L.; Deng, W. W.; Liu, J. F.; Wu, H.; Meng, Q. F.; Guo, S. S.; Zhao, X. Z. et al. Cancer stem cell-platelet hybrid membrane-coated magnetic nanoparticles for enhanced photothermal therapy of head and neck squamous cell carcinoma. Adv. Funct. Mater. 2019, 29, 1807733.

[44]

Rao, L.; Bu, L. L.; Meng, Q. F.; Cai, B.; Deng, W. W.; Li, A.; Li, K. Y.; Guo, S. S.; Zhang, W. F.; Liu, W. et al. Antitumor platelet-mimicking magnetic nanoparticles. Adv. Funct. Mater. 2017, 27, 1604774.

[45]

Chen, Y.; Zhao, G. M.; Wang, S.; He, Y. W.; Han, S. L.; Du, C. H.; Li, S. C.; Fan, Z. L.; Wang, C.; Wang, J. P. Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomater. Sci. 2019, 7, 3450–3459.

[46]

Wu, H.; Zhu, J. Q.; Xu, X. F.; Xing, H.; Wang, M. D.; Liang, L.; Li, C.; Jia, H. D.; Shen, F.; Huang, D. S. et al. Biointerfacing antagonizing T-cell inhibitory nanoparticles potentiate hepatocellular carcinoma checkpoint blockade therapy. Small 2021, 17, 2105237.

[47]

Zhou, M.; Lai, W. J.; Li, G. B.; Wang, F. L.; Liu, W. Y.; Liao, J. X.; Yang, H. B.; Liu, Y. L.; Zhang, Q.; Tang, Q. et al. Platelet membrane-coated and VAR2CSA malaria protein-functionalized nanoparticles for targeted treatment of primary and metastatic cancer. ACS Appl. Mater. Interfaces 2021, 13, 25635–25648.

[48]

Li, J. H.; Ai, Y. W.; Wang, L. H.; Bu, P. C.; Sharkey, C. C.; Wu, Q. H.; Wun, B.; Roy, S.; Shen, X. L.; King, M. R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 2016, 76, 52–65.

[49]

Evans, C. E.; Grover, S. P.; Humphries, J.; Saha, P.; Patel, A. P.; Patel, A. S.; Lyons, O. T.; Waltham, M.; Modarai, B.; Smith, A. Antiangiogenic therapy inhibits venous thrombus resolution. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 565–570.

[50]

Ward, Y.; Lake, R.; Faraji, F.; Sperger, J.; Martin, P.; Gilliard, C.; Ku, K. P.; Rodems, T.; Niles, D.; Tillman, H. et al. Platelets promote metastasis via binding tumor CD97 leading to bidirectional signaling that coordinates transendothelial migration. Cell Rep. 2018, 23, 808–822.

[51]

Gay, L. J.; Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer 2011, 11, 123–134.

[52]

Cruz, M. A.; Chen, J. M.; Whitelock, J. L.; Morales, L. D.; López, J. A. The platelet glycoprotein Ib-von Willebrand factor interaction activates the collagen receptor α2β1 to bind collagen: Activation-dependent conformational change of the α2-I domain. Blood 2005, 105, 1986–1991.

[53]

Wang, S. L.; Wang, R. F.; Meng, N. N.; Guo, H. Y.; Wu, S. Y.; Wang, X. Y.; Li, J. Y.; Wang, H.; Jiang, K.; Xie, C. et al. Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy. J. Control. Release 2020, 328, 78–86.

[54]

Song, W. T.; Tang, Z. H.; Zhang, D. W.; Li, M. Q.; Gu, J. K.; Chen, X. S. A cooperative polymeric platform for tumor-targeted drug delivery. Chem. Sci. 2016, 7, 728–736.

[55]

Li, B. Z.; Chu, T. J.; Wei, J. Y.; Zhang, Y. L.; Qi, F. L.; Lu, Z. F.; Gao, C.; Zhang, T. J.; Jiang, E. S.; Xu, J. C. et al. Platelet-membrane-coated nanoparticles enable vascular disrupting agent combining anti-angiogenic drug for improved tumor vessel impairment. Nano Lett. 2021, 21, 2588–2595.

[56]

Koupenova, M.; Clancy, L.; Corkrey, H. A.; Freedman, J. E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 2018, 122, 337–351.

[57]

Zhang, K.; Ma, Z. Y.; Li, S. T.; Zhang, W. Y.; Foda, M. F.; Zhao, Y. L.; Han, H. Y. Platelet-covered nanocarriers for targeted delivery of hirudin to eliminate thrombotic complication in tumor therapy. ACS Nano 2022, 16, 18483–18496.

[58]

Zhang, K.; Long, Y. Y.; Ma, Z. Y.; Li, S. T.; Zhao, Y. L.; Han, H. Y. Artificial nanoplatelet regulation of tumor immune microenvironment to inhibit post-surgical tumor recurrence and lung metastasis. Mater. Today 2023, 67, 68–83.

[59]

Ding, Y. F.; Wang, Z. Y.; Kwong, C. H. T.; Zhao, Y. H.; Mok, G. S. P.; Yu, H. Z.; Wang, R. B. Platelet-mimicking supramolecular nanomedicine with precisely integrated prodrugs for cascade amplification of synergistic chemotherapy. J. Control. Release 2023, 360, 82–92.

[60]

Ma, Y. Y.; Zhang, Y. Q.; Han, R.; Li, Y.; Zhai, Y. W.; Qian, Z. Y.; Gu, Y. Q.; Li, S. W. A cascade synergetic strategy induced by photothermal effect based on platelet exosome nanoparticles for tumor therapy. Biomaterials 2022, 282, 121384.

[61]

Wallis, S.; Wolska, N.; Englert, H.; Posner, M.; Upadhyay, A.; Renné, T.; Eggleston, I.; Bagby, S.; Pula, G. A peptide from the staphylococcal protein Efb binds P-selectin and inhibits the interaction of platelets with leukocytes. J. Thromb. Haemost. 2022, 20, 729–741.

[62]

Liu, Z. M.; Wang, J.; Liao, F. B.; Song, Q. B.; Yao, Y. Tumor-educated platelets facilitate thrombus formation through migration. Front. Oncol. 2022, 12, 857865.

[63]

Zhang, T.; Liu, H.; Li, L.; Guo, Z. Y.; Song, J.; Yang, X. Y.; Wan, G. Y.; Li, R. S.; Wang, Y. S. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioact. Mater. 2021, 6, 3865–3878.

[64]

Chaffer, C. L.; Weinberg, R. A. A perspective on cancer cell metastasis. Science 2011, 331, 1559–1564.

[65]

Anderson, R. L.; Balasas, T.; Callaghan, J.; Coombes, R. C.; Evans, J.; Hall, J. A.; Kinrade, S.; Jones, D.; Jones, P. S.; Jones, R. et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 2019, 16, 185–204.

[66]

Zhang, L. L.; Zhu, Y. F.; Wei, X. B.; Chen, X.; Li, Y.; Zhu, Y.; Xia, J. X.; Huang, Y. H.; Huang, Y. Z.; Wang, J. X. et al. Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model. Acta Pharm. Sin. B 2022, 12, 3427–3447.

[67]

Plantureux, L.; Mège, D.; Crescence, L.; Carminita, E.; Robert, S.; Cointe, S.; Brouilly, N.; Ezzedine, W.; Dignat-George, F.; Dubois, C. et al. The interaction of platelets with colorectal cancer cells inhibits tumor growth but promotes metastasis. Cancer Res. 2020, 80, 291–303.

[68]

Mammadova-Bach, E.; Gil-Pulido, J.; Sarukhanyan, E.; Burkard, P.; Shityakov, S.; Schonhart, C.; Stegner, D.; Remer, K.; Nurden, P.; Nurden, A. T. et al. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived galectin-3. Blood 2020, 135, 1146–1160.

[69]

Haemmerle, M.; Stone, R. L.; Menter, D. G.; Afshar-Kharghan, V.; Sood, A. K. The platelet lifeline to cancer: Challenges and opportunities. Cancer Cell 2018, 33, 965–983.

[70]

Ye, H.; Wang, K. Y.; Wang, M. L.; Liu, R. Z.; Song, H.; Li, N.; Lu, Q.; Zhang, W. J.; Du, Y. Q.; Yang, W. Q. et al. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 2019, 206, 1–12.

[71]

Ning, S. P.; Lyu, M.; Zhu, D. M.; Lam, J. W. Y.; Huang, Q. Q.; Zhang, T. F.; Tang, B. Z. Type-I AIE photosensitizer loaded biomimetic system boosting cuproptosis to inhibit breast cancer metastasis and rechallenge. ACS Nano 2023, 17, 10206–10217.

[72]

Ning, S. P.; Zhang, T. F.; Lyu, M.; Lam, J. W. Y.; Zhu, D. M.; Huang, Q. Q.; Tang, B. Z. A type I AIE photosensitiser-loaded biomimetic nanosystem allowing precise depletion of cancer stem cells and prevention of cancer recurrence after radiotherapy. Biomaterials 2023, 295, 122034.

[73]

Chen, H.; Luo, X.; Huang, Q. H.; Liu, Z. M.; Lyu, M.; Chen, D. X.; Mo, J. L.; Zhu, D. M. Platelet membrane fusion liposome loaded with type I AIE photosensitizer to induce chemoresistance cancer pyroptosis and immunogenic cell death for enhancing cancer immunotherapy. Chem. Eng. J. 2023, 476, 146276.

[74]

Zhao, H. J.; Zhao, B. B.; Li, L.; Ding, K. L.; Xiao, H. F.; Zheng, C. X.; Sun, L. L.; Zhang, Z. Z.; Wang, L. Biomimetic decoy inhibits tumor growth and lung metastasis by reversing the drawbacks of sonodynamic therapy. Adv. Healthc. Mater. 2020, 9, 1901335

[75]

Rao, L.; Meng, Q. F.; Huang, Q. Q.; Wang, Z. X.; Yu, G. T.; Li, A.; Ma, W. J.; Zhang, N. G.; Guo, S. S.; Zhao, X. Z. et al. Platelet-leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv. Funct. Mater. 2018, 28, 1803531.

[76]

Luo, Z. M.; Lu, L. W.; Xu, W. X.; Meng, N. N.; Wu, S. Y.; Zhou, J. F.; Xu, Q. Z.; Xie, C.; Liu, Y.; Lu, W. Y. In vivo self-assembled drug nanocrystals for metastatic breast cancer all-stage targeted therapy. J. Control. Release 2022, 346, 32–42.

[77]

Scherlinger, M.; Richez, C.; Tsokos, G. C.; Boilard, E.; Blanco, P. The role of platelets in immune-mediated inflammatory diseases. Nat. Rev. Immunol. 2023, 23, 495–510.

[78]

Li, T.; Chen, T. T.; Chen, H.; Wang, Q.; Liu, Z. Y.; Fang, L. Y.; Wan, M. M.; Mao, C.; Shen, J. Engineered platelet-based micro/nanomotors for cancer therapy. Small 2021, 17, 2104912.

[79]

Hu, Q. Y.; Li, H. J.; Archibong, E.; Chen, Q.; Ruan, H. T.; Ahn, S.; Dukhovlinova, E.; Kang, Y.; Wen, D.; Dotti, G. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 2021, 5, 1038–1047.

[80]

Li, Z. T.; Ding, Y. Y.; Liu, J.; Wang, J. X.; Mo, F. Y.; Wang, Y. X.; Chen-Mayfield, T. J.; Sondel, P. M.; Hong, S.; Hu, Q. Y. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat. Commun. 2022, 13, 1845.

[81]

Zhang, X. D.; Wang, J. Q.; Chen, Z. W.; Hu, Q. Y.; Wang, C.; Yan, J. J.; Dotti, G.; Huang, P.; Gu, Z. Engineering PD-1-presenting platelets for cancer immunotherapy. Nano Lett. 2018, 18, 5716–5725.

[82]

Lu, Q.; Ye, H.; Wang, K. Y.; Zhao, J.; Wang, H. L.; Song, J. X.; Fan, X. Y.; Lu, Y. T.; Cao, L. P.; Wan, B. et al. Bioengineered platelets combining chemotherapy and immunotherapy for postsurgical melanoma treatment: Internal core-loaded doxorubicin and external surface-anchored anti-PD-L1 antibody backpacks. Nano Lett. 2022, 22, 3141–3150.

[83]

Tang, S. S.; Zhang, F. Y.; Gong, H.; Wei, F. N.; Zhuang, J.; Karshalev, E.; Esteban-Fernández de Ávila, B.; Huang, C. Y.; Zhou, Z. D.; Li, Z. X. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 2020, 5, eaba6137.

[84]

Yang, Y. X.; Wang, Y. F.; Yao, Y. J.; Wang, S. Q.; Zhang, Y. Q.; Dotti, G.; Yu, J. C.; Gu, Z. T cell-mimicking platelet-drug conjugates. Matter 2023, 6, 2340–2355.

[85]

Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.

[86]

Hu, Q. Y.; Sun, W. J.; Wang, J. Q.; Ruan, H. T.; Zhang, X. D.; Ye, Y. Q.; Shen, S.; Wang, C.; Lu, W. Y.; Cheng, K. et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat. Biomed. Eng. 2018, 2, 831–840.

[87]

Lv, Y. L.; Li, F.; Wang, S.; Lu, G. H.; Bao, W. E.; Wang, Y. G.; Tian, Z. Y.; Wei, W.; Ma, G. H. Near-infrared light-triggered platelet arsenal for combined photothermal-immunotherapy against cancer. Sci. Adv. 2021, 7, eabd7614.

[88]

Li, H. J.; Wang, Z. J.; Chen, Z. W.; Ci, T.; Chen, G. J.; Wen, D.; Li, R. X.; Wang, J. Q.; Meng, H.; Bryan Bell, R. et al. Disrupting tumour vasculature and recruitment of aPDL1-loaded platelets control tumour metastasis. Nat. Commun. 2021, 12, 2773.

[89]

Xu, P. P.; Zuo, H. Q.; Chen, B.; Wang, R. J.; Ahmed, A.; Hu, Y.; Ouyang, J. Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma. Sci. Rep. 2017, 7, 42632.

[90]

Braun, A.; Anders, H. J.; Gudermann, T.; Mammadova-Bach, E. Platelet-cancer interplay: Molecular mechanisms and new therapeutic avenues. Front. Oncol. 2021, 11, 665534.

[91]

Xu, X. R.; Carrim, N.; Neves, M. A. D.; McKeown, T.; Stratton, T. W.; Coelho, R. M. P.; Lei, X.; Chen, P. G.; Xu, J. H.; Dai, X. R. et al. Platelets and platelet adhesion molecules: Novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb. J. 2016, 14, 29.

[92]

Lippi, G.; Franchini, M.; Targher, G. Arterial thrombus formation in cardiovascular disease. Nat. Rev. Cardiol. 2011, 8, 502–512.

[93]

Han, X.; Chen, J. W.; Chu, J. C.; Liang, C.; Ma, Q. L.; Fan, Q.; Liu, Z.; Wang, C. Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody. J. Control. Release 2019, 304, 233–241.

[94]

Rao, L.; Bu, L. L.; Ma, L.; Wang, W. B.; Liu, H. Q.; Wan, D.; Liu, J. F.; Li, A.; Guo, S. S.; Zhang, L. et al. Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem., Int. Ed. 2018, 57, 986–991.

[95]

Wang, Y. X.; Li, W.; Li, Z. T.; Mo, F. Y.; Chen, Y.; Iida, M.; Wheeler, D. L.; Hu, Q. Y. Active recruitment of anti-PD-1-conjugated platelets through tumor-selective thrombosis for enhanced anticancer immunotherapy. Sci. Adv. 2023, 9, eadf6854.

[96]

Fan, J. X.; Liu, X. H.; Wang, X. N.; Niu, M. T.; Chen, Q. W.; Zheng, D. W.; Wei, J. S.; Yang, X. Q.; Zeng, X.; Zhang, X. Z. Antibody engineered platelets attracted by bacteria-induced tumor-specific blood coagulation for checkpoint inhibitor immunotherapy. Adv. Funct. Mater. 2021, 31, 2009744.

[97]

Nishikawa, T.; Tung, L. Y.; Kaneda, Y. Systemic administration of platelets incorporating inactivated Sendai virus eradicates melanoma in mice. Mol. Ther. 2014, 22, 2046–2055.

[98]

Sim, X.; Poncz, M.; Gadue, P.; French, D. L. Understanding platelet generation from megakaryocytes: Implications for in vitro-derived platelets. Blood 2016, 127, 1227–1233.

[99]

Figueiredo, C.; Blasczyk, R. Generation of HLA universal megakaryocytes and platelets by genetic engineering. Front. Immunol. 2021, 12, 768458.

[100]

Yap, M. L.; McFadyen, J. D.; Wang, X. W.; Ziegler, M.; Chen, Y. C.; Willcox, A.; Nowell, C. J.; Scott, A. M.; Sloan, E. K.; Hogarth, P. M. et al. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics 2019, 9, 1154–1169.

[101]

Cao, J. X.; Yang, P.; Wang, P. Z.; Xu, S. T.; Cheng, Y. L.; Qian, K.; Xu, M. J.; Sheng, D. Y.; Li, Y. X.; Wei, Y. et al. 'Adhesion and release' nanoparticle-mediated efficient inhibition of platelet activation disrupts endothelial barriers for enhanced drug delivery in tumors. Biomaterials 2021, 269, 120620.

[102]

Li, S. J.; Li, L.; Lin, X.; Chen, C.; Luo, C. H.; Huang, Y. Targeted inhibition of tumor inflammation and tumor-platelet crosstalk by nanoparticle-mediated drug delivery mitigates cancer metastasis. ACS Nano 2022, 16, 50–67.

[103]

Zhang, Y. J.; Zhu, X.; Chen, X. L.; Chen, Q. J.; Zhou, W. X.; Guo, Q.; Lu, Y. F.; Li, C.; Zhang, Y.; Liang, D. H. et al. Activated platelets-targeting micelles with controlled drug release for effective treatment of primary and metastatic triple negative breast cancer. Adv. Funct. Mater. 2019, 29, 1806620.

[104]

Guo, R.; Deng, M.; He, X.; Li, M. M.; Li, J. X.; He, P. H.; Liu, H. Q.; Li, M.; Zhang, Z. R.; He, Q. Fucoidan-functionalized activated platelet-hitchhiking micelles simultaneously track tumor cells and remodel the immunosuppressive microenvironment for efficient metastatic cancer treatment. Acta Pharm. Sin. B 2022, 12, 467–482.

[105]

Song, Y. N.; Zhang, N.; Li, Q. Y.; Chen, J.; Wang, Q. Z.; Yang, H. B.; Tan, H. P.; Gao, J. F.; Dong, Z. H.; Pang, Z. Q. et al. Biomimetic liposomes hybrid with platelet membranes for targeted therapy of atherosclerosis. Chem. Eng. J. 2021, 408, 127296.

[106]

Hu, S. Q.; Wang, X. Y.; Li, Z. H.; Zhu, D. S.; Cores, J.; Wang, Z. Z.; Li, J. L.; Mei, X.; Cheng, X.; Su, T. et al. Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today 2021, 39, 101210.

[107]

Jin, P. P.; Wang, L. S.; Sha, R.; Liu, L.; Qian, J. Y.; Ishimwe, N.; Zhang, W. B.; Qian, J.; Zhang, Y. J.; Wen, L. P. A blood circulation-prolonging peptide anchored biomimetic phage-platelet hybrid nanoparticle system for prolonged blood circulation and optimized anti-bacterial performance. Theranostics 2021, 11, 2278–2296.

[108]

Zhang, Y.; Ma, K. L.; Gong, Y. X.; Wang, G. H.; Hu, Z. B.; Liu, L.; Lu, J.; Chen, P. P.; Lu, C. C.; Ruan, X. Z. et al. Platelet microparticles mediate glomerular endothelial injury in early diabetic nephropathy. J. Am. Soc. Nephrol. 2018, 29, 2671–2695.

[109]

Zhang, X. D.; Kang, Y.; Wang, J. Q.; Yan, J. J.; Chen, Q.; Cheng, H.; Huang, P.; Gu, Z. Engineered PD-L1-expressing platelets reverse new-onset type 1 diabetes. Adv. Mater. 2020, 32, 1907692.

[110]

Mezouar, S.; Frère, C.; Darbousset, R.; Mege, D.; Crescence, L.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences. Thromb. Res. 2016, 139, 65–76.

[111]

Servais, L.; Wéra, O.; Epoh, J. D.; Delierneux, C.; Bouznad, N.; Rahmouni, S.; Mazzucchelli, G.; Baiwir, D.; Delvenne, P.; Lancellotti, P. et al. Platelets contribute to the initiation of colitis-associated cancer by promoting immunosuppression. J. Thromb. Haemost. 2018, 16, 762–777.

Nano Research
Pages 8269-8284
Cite this article:
Cai X, Qiu L, Diao Z, et al. Platelet-based bioactive systems guided precision targeting and immune regulation for cancer therapy. Nano Research, 2024, 17(9): 8269-8284. https://doi.org/10.1007/s12274-024-6777-0
Topics:

494

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 April 2024
Revised: 17 May 2024
Accepted: 22 May 2024
Published: 26 June 2024
© Tsinghua University Press 2024
Return