AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous block copolymer films with self-adjustable optical transmittance and passive radiative cooling

Xue Meng1,§Weiming Tang1,§Shuyun Zhuo2,§Jince Zhao2Zixuan Ren2Zhonghe Sun2Hao Yan2Tianyi Zhao2( )Ziguang Zhao1( )Mingjie Liu2( )
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Bio-Inspired Smart Interfacial, Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China

§ Xue Meng, Weiming Tang, and Shuyun Zhuo contributed equally to this work.

Show Author Information

Graphical Abstract

The block copolymer films with porous structures possessed excellent passive radiative cooling derived from the high solar reflectance (0.3–2.5 μm) and infrared emittance (8–13 μm). Meanwhile, the film had the property of self-adjustable optical transmittance by changing the polarity of the post-treatment solvent.

Abstract

As an energy-free cooling technique, radiative cooling has garnered significant attention in the field of energy conservation. However, traditional radiative cooling films often possess static optical properties and their inherent opacity limits their applications in building such as windows. Therefore, there exists a requirement for passive radiative cooling films endowed with adjustable transmittance. Here we report the porous block copolymer films with self-adjustable optical transmittance and passive radiative cooling. In a result, the film exhibited a high solar reflectance (0.3–2.5 μm) of 96.9% and a high infrared emittance (8–13 μm) of 97.9%. Outdoor experiments demonstrated that the film surface temperature was 6.6 °C lower than ambient temperature, with a cooling power of 104.8 W·m–2. In addition, the film’s transmittance can be regulated by altering the polarity of the post-processing solvent, providing an effective approach for regulating indoor light intensity and thermal balance, thereby enhancing the applicability of radiative cooling.

Electronic Supplementary Material

Download File(s)
6778_ESM.pdf (2.4 MB)

References

[1]

Banerjee, D.; Hallberg, T.; Chen, S. Z.; Kuang, C. Y.; Liao, M. N.; Kariis, H.; Jonsson, M. P. Electrical tuning of radiative cooling at ambient conditions. Cell Rep. Phys. Sci. 2023, 4, 101274.

[2]

Zhao, D. L.; Aili, A.; Zhai, Y.; Lu, J. T.; Kidd, D.; Tan, G.; Yin, X. B.; Yang, R. G. Subambient cooling of water: Toward real-world applications of daytime radiative cooling. Joule 2019, 3, 111–123.

[3]

Liu, J. W.; Zhang, J.; Zhang, D. B.; Jiao, S. F.; Xing, J. C.; Tang, H. J.; Zhang, Y.; Li, S.; Zhou, Z. H.; Zuo, J. Sub-ambient radiative cooling with wind cove. Renew. Sust. Energy Rev. 2020, 130, 109935.

[4]

Chen, L. F.; Zhang, K.; Ma, M. Q.; Tang, S. H.; Li, F.; Niu, X. F. Sub-ambient radiative cooling and its application in buildings. Build. Simul. 2020, 13, 1165–1189.

[5]

Zhao, X. P.; Li, T. Y.; Xie, H.; Liu, H.; Wang, L. Z.; Qu, Y. R.; Li, S. C.; Liu, S. F.; Brozena, A. H.; Yu, Z. F. et al. A solution-processed radiative cooling glass. Science 2023, 382, 684–691.

[6]

Tang, W. M.; Li, Y.; Meng, X.; Wang, S. T.; Zhao, Z. G. Environment-adaptive phase-separation-porous fluorofilm for high-performance passive radiation cooling. Nano Res. 2024, 17, 5636–5644.

[7]

Li, S.; Zhou, Z. H.; Liu, J. W.; Zhang, J.; Tang, H. J.; Zhang, Z. F.; Na, Y. L.; Jiang, C. X. Research on indirect cooling for photovoltaic panels based on radiative cooling. Renew. Energy 2022, 198, 947–959.

[8]

Hossain, M. M.; Gu, M. Radiative cooling: Principles, progress, and potentials. Adv. Sci. 2016, 3, 1500360.

[9]

Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760–763.

[10]

Albanese, B.; Probst, S.; Ranjan, V.; Zollitsch, C. W.; Pechal, M.; Wallraff, A.; Morton, J. J. L.; Vion, D.; Esteve, D.; Flurin, E. et al. Radiative cooling of a spin ensemble. Nat. Phys. 2020, 16, 751–755.

[11]

Trosseille, J.; Mongruel, A.; Royon, L.; Beysens, D. Radiative cooling for dew condensation. Int. J. Heat Mass Transf. 2021, 172, 121160.

[12]

Pal, S. K.; Choi, D. Y.; Kim, G. Radiative cooling face mask. ACS Appl. Polym. Mater. 2023, 5, 5888–5895.

[13]

Li, J. L.; Liang, Y.; Li, W.; Xu, N.; Zhu, B.; Wu, Z.; Wang, X. Y.; Fan, S. H.; Wang, M. H.; Zhu, J. Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 2022, 8, eabj9756.

[14]

Li, W.; Shi, Y.; Chen, Z.; Fan, S. H. Photonic thermal management of coloured objects. Nat. Commun. 2018, 9, 4240.

[15]

Fan, S. H.; Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photonics 2022, 16, 182–190.

[16]

Chen, W. P.; Zhai, L. X.; Zhang, S. L.; Zhao, Z. G.; Hu, Y. H.; Xiang, Y.; Liu, H. R.; Xu, Z. P.; Jiang, L.; Wen, L. P. Cascade-heterogated biphasic gel iontronics for electronic-to-multi-ionic signal transmission. Science 2023, 382, 559–565.

[17]

Li, Z. Z.; Chen, Q. Y.; Song, Y.; Zhu, B.; Zhu, J. Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 2020, 5, 1901007.

[18]

Yang, Y. C.; Ru, Y. F.; Zhao, T. Y.; Liu, M. J. Bioinspired multiphase composite gel materials: From controlled micro-phase separation to multiple functionalities. Chem 2023, 9, 3113–3137.

[19]

Hsu, P. C.; Li, X. Q. Photon-engineered radiative cooling textiles. Science 2020, 370, 784–785.

[20]

Wang, N. S.; Lv, Y. Y.; Zhao, D. L.; Zhao, W. B.; Xu, J. T.; Yang, R. G. Performance evaluation of radiative cooling for commercial-scale warehouse. Mater. Today Energy 2022, 24, 100927.

[21]

Jeon, S.; Son, S.; Lee, S. Y.; Chae, D.; Bae, J. H.; Lee, H.; Oh, S. J. Multifunctional daytime radiative cooling devices with simultaneous light-emitting and radiative cooling functional layers. ACS Appl. Mater. Interfaces 2020, 12, 54763–54772.

[22]

Beucler, T.; Cronin, T. W. Moisture-radiative cooling instability. J. Adv. Model. Earth Syst. 2016, 8, 1620–1640.

[23]

Song, J. N.; Shen, Q. C.; Shao, H. J.; Deng, X. Anti-environmental aging passive daytime radiative cooling. Adv. Sci. 2024, 11, 2305664.

[24]

Yoon, S.; Chae, D.; Seo, J.; Choi, M.; Lim, H.; Lee, H.; Lee, B. J. Development of a device for characterizing radiative cooling performance. Appl. Therm. Eng. 2022, 213, 118744.

[25]

Xie, B.; Liu, Y. D.; Xi, W.; Hu, R. Colored radiative cooling: Progress and prospects. Mater. Today Energy 2023, 34, 101302.

[26]

Yang, Z. B.; Jia, Y.; Zhang, J. Hierarchical-morphology metal/polymer heterostructure for scalable multimodal thermal management. ACS Appl. Mater. Interfaces 2022, 14, 24755–24765.

[27]

Ke, Y. J.; Li, Y. B.; Wu, L. C.; Wang, S. C.; Yang, R. G.; Yin, J.; Tan, G.; Long, Y. On-demand solar and thermal radiation management based on switchable interwoven surfaces. ACS Energy Lett. 2022, 7, 1758–1763.

[28]

Mandal, J.; Jia, M. X.; Overvig, A.; Fu, Y. K.; Che, E.; Yu, N. F.; Yang, Y. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 2019, 3, 3088–3099.

[29]

Fei, J. P.; Han, D.; Ge, J. Y.; Wang, X. L.; Koh, S. W.; Gao, S. B.; Sun, Z. X.; Wan, M. P.; Ng, B. F.; Cai, L. L. et al. Switchable surface coating for bifunctional passive radiative cooling and solar heating. Adv. Funct. Mater. 2022, 32, 2203582.

[30]

Fang, R. C.; Liu, M. J.; Jiang, L. Progress of binary cooperative complementary interfacial nanomaterials. Nano Today 2019, 24, 48–80.

[31]

Zhang, J. H.; Liu, M. J.; Wang, S. T. Improved mechanical properties and thermal degradation of low-temperature hydrogenated acrylonitrile butadiene rubber composites with poly(sodium methacrylate) nanowires. RSC Adv. 2016, 6, 64110–64120.

[32]

Zhao, Z. G.; Cao, Z. Q.; Wu, Z. X.; Du, W. X.; Meng, X.; Chen, H. W.; Wu, Y. C.; Jiang, L.; Liu, M. J. Bicontinuous vitrimer heterogels with wide-span switchable stiffness-gated iontronic coordination. Sci. Adv. 2024, 10, eadl2737.

[33]

Chen, Y. J.; Mandal, J.; Li, W. X.; Smith-Washington, A.; Tsai, C. C.; Huang, W. L.; Shrestha, S.; Yu, N. F.; Han, R. P. S.; Cao, A. Y. et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 2020, 6, eaaz5413.

[34]

Zhou, L.; Yin, X. B.; Gan, Q. Q. Best practices for radiative cooling. Nat. Sustain. 2023, 6, 1030–1032.

Nano Research
Pages 8472-8478
Cite this article:
Meng X, Tang W, Zhuo S, et al. Porous block copolymer films with self-adjustable optical transmittance and passive radiative cooling. Nano Research, 2024, 17(9): 8472-8478. https://doi.org/10.1007/s12274-024-6778-z
Topics:

474

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 April 2024
Revised: 15 May 2024
Accepted: 22 May 2024
Published: 02 July 2024
© Tsinghua University Press 2024
Return