AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergistic effect and heterointerface engineering of cobalt/carbon nanotubes enhancing electromagnetic wave absorbing properties of silicon carbide fibers

Zixiang ZhaoZheyipei MaZizhao DingYanqiong LiuMingwei ZhangChao Jiang( )
Institute of Powder Metallurgy Research, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Silicon carbide (SiC) fibers wrapped by metal organic framework (MOF)-derived Co nanocrystals and multiwalled carbon nanotubes exhibit excellent microwave absorbing property of –70.22 dB reflection loss.

Abstract

To improve the synergistic effect between dielectric and magnetic loss is a practical and effective way in optimizing electromagnetic wave absorbing materials. The composites of metal particles and carbon ligands derived from metal organic frameworks have gained wide attention. In this study, Co particles and multiwalled carbon nanotubes (CNT) were successfully synthesized covering the surface of silicon carbide (SiC) fibers, and the morphology, interfaces and electromagnetic wave absorption performance were explored. For sample SiC@Co/CNT, the minimum reflection loss value can reach –70.22 dB at 11.21 GHz with the thickness of 2.12 mm. The effective absorbing bandwidth can reach up to 6.03 GHz with the thickness of 1.71 mm, which covers the entire Ku band. It brings more interfaces between Co particles and CNTs as well as SiC fibers and Co/C nanosheets. The interfacial polarization has been hugely enhanced, and the microwave absorbing properties have been improved. This article reports on the impedance matching of magnetic and non-magnetic components and the heterointerface engineering, which can be effective strategy and inspiration to illustrate the relationship between components, structures and functions of electromagnetic wave absorbing materials.

Electronic Supplementary Material

Download File(s)
6780_ESM.pdf (732.9 KB)

References

[1]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. L.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[2]

Li, S. S.; Tang, X. W.; Zhao, X.; Lu, S. J.; Luo, J. T.; Chai, Z. Y.; Ma, T. T.; Lan, Q. Q.; Ma, P. M.; Dong, W. F. et al. Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 2023, 133, 238–248.

[3]

Wang, C. H.; Ding, Y. J.; Yuan, Y.; He, X. D.; Wu, S. T.; Hu, S.; Zou, M. C.; Zhao, W. Q.; Yang, L. S.; Cao, A. Y. et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C 2015, 3, 11893–11901.

[4]

Zhang, Q. C.; Du, Z. J.; Hou, M. M.; Ding, Z. Z.; Huang, X. Z.; Chen, A. L.; Ma, Y. T.; Lu, S. J.; Tang, X. Z. Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption. Carbon 2022, 188, 442–452.

[5]

Ding, Z. Z.; Du, Z. J.; Liu, Y.; Zhang, Q. C.; Zhao, Z. X.; Hou, M. M.; Wang, X. Y.; Hassan, Y. A.; Huang, X. Z.; Yue, J. J. et al. Reduced graphene oxide loaded with rich defects CoO/Co3O4 for broadband microwave absorption. Compos. B Eng. 2023, 249, 110403.

[6]

Zhao, Z. X.; Du, Z. J.; Huang, X. Z.; Jiang, C. 1D-2D heterostructured silicon carbide fibers@WS2 with high efficiency and broad bandwidth for microwave absorption performance. Ceram. Int. 2023, 49, 9916–9923.

[7]

Zhao, Z. X.; Zhang, M. W.; Ma, Z. Y. P.; Liu, Y. Q.; Jiang, C. One-step hydrothermal synthesis of core-shell structural silicon carbide@WS2 with high efficiency for microwave absorption. J. Alloys Compd. 2023, 969, 172469.

[8]

Sun, X.; Pu, Y. H.; Wu, F.; He, J. Z.; Deng, G.; Song, Z. M.; Liu, X. F.; Shui, J. L.; Yu, R. H. 0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chem. Eng. J. 2021, 423, 130132.

[9]

Li, W. X.; Li, B. Q.; Zhao, Y. L.; Wang, Y. F.; Liang, H. L.; Lv, B. L. Facile preparation of CoFe alloy/carbonized bamboo fibers for broadband microwave absorption. J. Alloys Compd. 2024, 970, 172545.

[10]

Zhang, M.; Ling, H. L.; Ding, S. Q.; Xie, Y. X.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Bian, H. G.; Lin, H.; Li, Z. J. et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 2021, 174, 248–259.

[11]

Mei, H.; Han, D. Y.; Xiao, S. S.; Ji, T. M.; Tang, J.; Cheng, L. F. Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon 2016, 109, 149–153.

[12]

Zhang, Z. Y.; Liu, X. X.; Zhang, H. F.; Li, E. S. Electromagnetic and microwave absorption properties of carbon fibers coated with carbonyl iron. J. Mater. Sci. Mater. Electron. 2015, 26, 6518–6525.

[13]

Zhang, H. T.; Zhang, J. S.; Zhang, H. Y. Electromagnetic properties of silicon carbide foams and their composites with silicon dioxide as matrix in X-band. Compos. Part A Appl. Sci. Manuf. 2007, 38, 602–608.

[14]

Wongmaneerung, R.; Singjai, P.; Yimnirun, R.; Ananta, S. Effects of SiC nanofibers addition on microstructure and dielectric properties of lead titanate ceramics. J. Alloys Compd. 2009, 475, 456–462.

[15]

Wang, H. Y.; Zhu, D. M.; Wang, X. F.; Luo, F. Influence of silicon carbide fiber (SiCf) type on the electromagnetic microwave absorbing properties of SiCf/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2017, 93, 10–17.

[16]

Wu, R. B.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60.

[17]

Ye, F.; Zhang, L. T.; Yin, X. W.; Liu, Y. S.; Cheng, L. F. Dielectric and electromagnetic wave absorbing properties of two types of SiC fibres with different compositions. J. Mater. Sci. Technol. 2013, 29, 55–58.

[18]

Guo, T.; Huang, B.; Li, C. G.; Lou, Y. M.; Tang, X. Z.; Huang, X. Z.; Yue, J. L. Magnetic sputtering of FeNi/C bilayer film on SiC fibers for effective microwave absorption in the low-frequency region. Ceram. Int. 2021, 47, 5221–5226.

[19]

Wang, D.; Gu, J. L.; Wang, H. L.; Liu, M. Z.; Liu, Y. C.; Zhang, X. T. Promoting photoelectrochemical water oxidation of BiVO4 photoanode via Co-MOF-derived heterostructural cocatalyst. Appl. Surf. Sci. 2023, 619, 156710.

[20]

Miao, P.; Qu, N.; Chen, W. X.; Wang, T. Y.; Zhao, W. F.; Kong, J. A two-dimensional semiconductive Cu-S metal-organic framework for broadband microwave absorption. Chem. Eng. J. 2023, 454, 140445.

[21]

Lin, K.; Wu, L. Y.; Wu, T. Y.; Yuan, C. N.; Jia, X. L.; Yang, X. P.; Sui, G. Bimetal-doped core-shell carbon derived from nickel-cobalt dual-ligand metal-organic framework for adjustable strong microwave absorption. J. Colloid Interface Sci. 2022, 627, 90–101.

[22]

Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671–3682.

[23]

Zhang, Y.; Yang, Z. H.; Li, M.; Yang, L. J.; Liu, J. C.; Ha, Y.; Wu, R. B. Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 2020, 382, 123039.

[24]

Jiang, R.; Wang, Y. Q.; Wang, J. Y.; He, Q. C.; Wu, G. L. Controlled formation of multiple core-shell structures in metal-organic frame materials for efficient microwave absorption. J. Colloid Interface Sci. 2023, 648, 25–36.

[25]

Liu, B.; Liang, B.; Xiao, J. J.; Feng, M. F.; Cheng, H.; Li, Y.; Cheng, Y.; Zhang, K. F. MOF derived NiFe@C composites with controllable multi-dimensional microstructures for broadband microwave absorption. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107869.

[26]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[27]

Hu, Q. M.; Yang, R. L.; Yang, S. D.; Huang, W. B.; Zeng, Z. P.; Gui, X. C. Metal-organic framework-derived core-shell nanospheres anchored on Fe-filled carbon nanotube sponge for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 2022, 14, 10577–10587.

[28]

Wang, J. X.; Yang, J. F.; Yang, J.; Zhang, H. An Ni-Co bimetallic MOF-derived hierarchical CNT/CoO/Ni2O3 composite for electromagnetic wave absorption. J. Alloys Compd. 2021, 876, 160126.

[29]

Yin, X. W.; Kong, L.; Zhang, L. T.; Cheng, L. F.; Travitzky, N.; Greil, P. Electromagnetic properties of Si-C-N based ceramics and composites. Int. Mater. Rev. 2014, 59, 326–355.

[30]

Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099.

[31]

Yang, B. P.; Zhou, Y. L.; Huang, Z. C.; Mei, B. B.; Kang, Q.; Chen, G.; Liu, X. H.; Jiang, Z.; Liu, M.; Zhang, N. Electron-deficient cobalt nanocrystals for promoted nitrate electrocatalytic reduction to synthesize ammonia. Nano Energy. 2023, 117, 108901.

[32]

Su, X. W.; Liu, Y. Y.; Liao, Z. J.; Bi, Y. X.; Chen, Y.; Ma, Y.; Chung, K. L.; Wan, F.; Ma, M. L. A review of 1D magnetic nanomaterials in microwave absorption. J. Mater. Sci. 2023, 58, 636–663.

[33]

Fei, Y. F.; Jiao, W. L.; Wu, Z. C.; Yang, Z. H.; Cheng, W.; Che, R. C. Recent progress in TiO2-based microwave absorption materials. Nanoscale 2023, 15, 12193–12211.

[34]

Yu, J.; Hu, B.; Nie, P. F.; Shang, X. H.; Zhang, B. S.; Tang, Z. Y.; Yang, J. M.; Liu, J. Y. Co, Zn-MOF derived Co@C-NCNTs for boosting non-radical oxidation of norfloxacin by peroxymonosulfate. Colloid. Surf. A Physicochem. Eng. Asp. 2022, 647, 129037.

[35]

Li, F.; Qin, T. T.; Sun, Y. P.; Jiang, R. J.; Yuan, J. F.; Liu, X. Q.; O’Mullane, A. P. Preparation of a one-dimensional hierarchical MnO@CNT@Co-N/C ternary nanostructure as a high-performance bifunctional electrocatalyst for rechargeable Zn-air batteries. J. Mater. Chem. A 2021, 9, 22533–22543.

[36]

Li, X. T.; Liang, H. J.; Liu, X. L.; Sun, R.; Qin, Z. X.; Fan, H. S.; Zhang, Y. F. Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem. Eng. J. 2021, 425, 130657.

[37]

Yang, Z. Y.; Zhao, Y. F.; Xiao, Q. Q.; Zhang, Y. X.; Jing, L.; Yan, Y. M.; Sun, K. N. Controllable growth of CNTs on Graphene as high-performance electrode material for supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 8497–8504.

[38]

Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ZIF-67 derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

[39]

Wang, Z.; Liu, J. X.; Hao, H. Q.; Jing, Q. H.; Yan, S. Q.; Guo, J.; Wang, Z. J. Microwave absorption enhancement by SiC nanowire aerogels through heat treatment-based oxidation modulation. Carbon 2024, 217, 118622.

[40]

Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.

[41]

Zhang, Y. F.; Zhang, L.; Zhou, B. Q.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Microwave absorption and thermal conductivity properties in NPC@MoSe2/PDMS composites. Carbon 2023, 209, 117997.

[42]

He, Y. R.; Zhou, J. T.; Tao, J. Q.; Zhang, X. J.; Yao, Z. J.; Hao, X. Q. A control strategy for microwave absorption performance on a two-dimensional scale. Chem. Eng. J. 2023, 472, 144841.

[43]

Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

[44]

Liu, Z.; Wang, B.; Wei, S. C.; Huang, W.; Wang, Y. J.; Liang, Y.; Wang, X. Y. Novel preparation of FeCo alloy/graphene foam composites for efficient microwave absorption. Carbon 2023, 215, 118452.

[45]

Yu, G. Y.; Shao, G. F.; Chen, Y.; Huang, X. G. Nanolayered ceramic-confined graphene aerogel with conformal heterointerfaces for low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2023, 15, 39559–39569.

[46]

Li, Q.; Liang, D. Z.; Wang, D. H.; Ling, L.; Jiang, L. J.; Qiu, F. Z.; Qian, M. Recent progress and outlook on the emerging low-dimensional MoS2 nanostructures for microwave absorption. ACS Appl. Electron. Mater. 2024, 6, 120–143.

[47]

Du, Z. L.; Wang, D. S.; Fu, H. Y.; Liu, X. D.; Yi, S.; Rao, J. S.; Liu, X. Y.; Zhang, Y. X. Enhanced microwave absorption performance of α-FeOOH nanorods on carbon aerogel powder. ACS Appl. Nano Mater. 2023, 6, 20700–20709.

[48]

Yu, M.; Li, S. M.; Ren, X. L.; Liu, N.; Guo, W. N.; Xue, J.; Tan, L. F.; Fu, C. H.; Wu, Q.; Niu, M. et al. Magnetic bimetallic heterointerface nanomissiles with enhanced microwave absorption for microwave thermal/dynamics therapy of breast cancer. ACS Nano 2024, 18, 3636–3650.

[49]

Zhou, P. P.; Zhang, J.; Song, Z.; Kuang, Y. W.; Liu, Y. S.; Wang, L. X.; Zhang, Q. T. Defect engineering in N-doped OMC for lightweight and high-efficiency electromagnetic wave absorption. J. Materiomics 2024, 10, 190–199.

[50]

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

[51]

Li, Z. J.; Lin, H.; Xie, Y. X.; Zhao, L. B.; Guo, Y. Y.; Cheng, T. T.; Ling, H. L.; Meng, A. L.; Li, S. X.; Zhang, M. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 124, 182–192.

[52]

Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; Xie, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 2022, 14, 157.

[53]

Guo, Y. Y.; Zhang, M.; Cheng, T. T.; Xie, Y. X.; Zhao, L. B.; Jiang, L.; Zhao, W. X.; Yuan, L. Y.; Meng, A. L.; Zhang, J. et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 2023, 16, 9591–9601.

[54]

Yuan, L. Y.; Zhao, W. X.; Miao, Y. K.; Wang, C.; Cui, A. G.; Tian, Z. N.; Wang, T.; Meng, A.; Zhang, M.; Li, Z. J. Constructing core-shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption. Adv. Compos. Hybrid Mater. 2024, 7, 70.

Nano Research
Pages 8479-8486
Cite this article:
Zhao Z, Ma Z, Ding Z, et al. Synergistic effect and heterointerface engineering of cobalt/carbon nanotubes enhancing electromagnetic wave absorbing properties of silicon carbide fibers. Nano Research, 2024, 17(9): 8479-8486. https://doi.org/10.1007/s12274-024-6780-5
Topics:

270

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 March 2024
Revised: 14 May 2024
Accepted: 22 May 2024
Published: 27 June 2024
© Tsinghua University Press 2024
Return