AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Chirality transfer induced circularly polarized luminescence of achiral dye molecules by plasmonic nanohelicoid

Han Gao1ChunLian Zhan1Tianqi Zhao1Jianzhong Zheng2( )
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Show Author Information

Graphical Abstract

The circularly polarized luminescence is induced by the combination of chiral plasmonic nanostructures and achiral luminophores.

Abstract

Optical materials with circularly polarized luminescence (CPL) features have attracted a growing interest due to their crucial role in biological sensing, display, spintronics, information storage, and so forth. However, CPL emissions in hybrid nanoparticle systems, in particular, chirality transfer induced CPL from chiral plasmonic nanoparticles, have rarely been explored due to a lack of effective bottom-up synthesis method. Herein, we creatively take advantage of the newly introduced chiral plasmonic nanoparticles-gold nanohelicoid (GNH) to excite the CPL of achiral Rhodamine 6G (R6G). The fabricated GNH@R6G-SiO2 shows obvious CPL signals with |glum| up to 0.014. Compared with the single GNH, the photoluminescence (PL) dissymmetry factor of the single GNH@R6G-SiO2 is similar, but with 25 folds higher PL intensities under different circular polarization. Our research not only offers an effective and feasible method to fabricate single-particle level CPL-active materials, but also provides guidelines on how to regulate the CPL of achiral luminophores from chiral plasmonic nanostructures, thereby enlarging the category and quantity of CPL-active materials that can be applied for photonic technologies and visualization biosensing, especially some intracellular chirality related detection.

Electronic Supplementary Material

Download File(s)
6781_ESM.pdf (739.8 KB)

References

[1]

Liu, M. H.; Zhang, L.; Wang, T. Y. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.

[2]

Sang, Y. T.; Han, J. L.; Zhao, T. H.; Duan, P. F.; Liu, M. H. Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater. 2020, 32, 1900110.

[3]

Zhang, Y. D.; Yu, S.; Han, B.; Zhou, Y. L.; Zhang, X. W.; Gao, X. Q.; Tang, Z. Y. Circularly polarized luminescence in chiral materials. Matter 2022, 5, 837–875.

[4]

Stanciu, C. D.; Hansteen, F.; Kimel, A. V.; Kirilyuk, A.; Tsukamoto, A.; Itoh, A.; Rasing, T. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 2007, 99, 047601.

[5]

Lee, C. T.; Lin, H. Y.; Tsai, C. H. Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays. Opt. Express 2010, 18, 27079–27094.

[6]

Saïdi, F.; Taulelle, F.; Martineau, C. Quantitative 13C solid-state NMR spectra by multiple-contact cross-polarization for drug delivery: From active principles to excipients and drug carriers. J. Pharm. Sci. 2016, 105, 2397–2401.

[7]

Nishizawa, N.; Al-Qadi, B.; Kuchimaru, T. Angular optimization for cancer identification with circularly polarized light. J. Biophotonics 2021, 14, e202000380.

[8]

Gong, Z. L.; Zhu, X. F.; Zhou, Z. H.; Zhang, S. W.; Yang, D.; Zhao, B.; Zhang, Y. P.; Deng, J. P.; Cheng, Y. X.; Zheng, Y. X. et al. Frontiers in circularly polarized luminescence: Molecular design, self-assembly, nanomaterials, and applications. Sci. China Chem. 2021, 64, 2060–2104.

[9]

Deng, Y. J.; Wang, M. Z.; Zhuang, Y. L.; Liu, S. J.; Huang, W.; Zhao, Q. Circularly polarized luminescence from organic micro-/nano-structures. Light Sci. Appl. 2021, 10, 76.

[10]

Yang, X. K.; Lv, J. W.; Zhang, J.; Shen, T. X.; Xing, T. Y.; Qi, F. L.; Ma, S. H.; Gao, X. Q.; Zhang, W.; Tang, Z. Y. Tunable circularly polarized luminescence from inorganic chiral photonic crystals doped with quantum dots. Angew. Chem., Int. Ed. 2022, 61, e202201674.

[11]

Chen, C.; Gao, L.; Gao, W. R.; Ge, C.; Du, X. Y.; Li, Z.; Yang, Y.; Niu, G. D.; Tang, J. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 2019, 10, 1927.

[12]

Sugimoto, M.; Liu, X. L.; Tsunega, S.; Nakajima, E.; Abe, S.; Nakashima, T.; Kawai, T.; Jin, R. H. Circularly polarized luminescence from inorganic materials: Encapsulating guest lanthanide oxides in chiral silica hosts. Chem. -Eur. J. 2018, 24, 6519–6524.

[13]

Le, K. Q.; Hashiyada, S.; Kondo, M.; Okamoto, H. Circularly polarized photoluminescence from achiral dye molecules induced by plasmonic two-dimensional chiral nanostructures. J. Phys. Chem. C 2018, 122, 24924–24932.

[14]

Sun, J.; Li, Z. Y.; Sun, Y. H.; Zhong, L. B.; Huang, J.; Zhang, J. C.; Liang, Z. Q.; Chen, J. M.; Jiang, L. Uniform and reproducible plasmon-enhanced fluorescence substrate based on PMMA-coated, large-area Au@Ag nanorod arrays. Nano Res. 2018, 11, 953–965.

[15]

Wang, Y. W.; Gao, H.; Liu, Y. L.; Li, D.; Zhao, B.; Liang, W. K.; Sun, Y. H.; Jiang, L. Large-scale controllable fabrication of aluminum nanobowls for surface plasmon-enhanced fluorescence. Nano Res. 2023, 16, 10131–10138.

[16]

Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

[17]

Cho, N. H.; Byun, G. H.; Lim, Y. C.; Im, S. W.; Kim, H.; Lee, H. E.; Ahn, H. Y.; Nam, K. T. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 2020, 14, 3595–3602.

[18]

Lee, H. E.; Kim, R. M.; Ahn, H. Y.; Lee, Y. Y.; Byun, G. H.; Im, S. W.; Mun, J.; Rho, J.; Nam, K. T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263.

[19]

Chen, P. G.; Gao, H.; Tang, B.; Jin, W.; Rogach, A. L.; Lei, D. Y. Universal chiral-plasmon-induced upward and downward transfer of circular dichroism to achiral molecules. Nano Lett. 2024, 24, 2488–2495.

[20]

Rafiei Miandashti, A.; Khosravi Khorashad, L.; Kordesch, M. E.; Govorov, A. O.; Richardson, H. H. Experimental and theoretical observation of photothermal chirality in gold nanoparticle helicoids. ACS Nano 2020, 14, 4188–4195.

[21]

Lee, Y. Y.; Cho, N. H.; Im, S. W.; Lee, H. E.; Ahn, H. Y.; Nam, K. T. Chiral 432 helicoid II nanoparticle synthesized with glutathione and Poly(T)20 nucleotide. ChemNanoMat 2020, 6, 362–367.

[22]

Li, L.; Wang, W.; Tang, J. G.; Wang, Y.; Liu, J. X.; Huang, L. J.; Wang, Y. X.; Guo, F. X.; Wang, J. X.; Shen, W. F. et al. Classification, synthesis, and application of luminescent silica nanoparticles: A review. Nanoscale Res. Lett. 2019, 14, 190.

[23]

Fokkema, J.; Fermie, J.; Liv, N.; van den Heuvel, D. J.; Konings, T. O. M.; Blab, G. A.; Meijerink, A.; Klumperman, J.; Gerritsen, H. C. Fluorescently labelled silica coated gold nanoparticles as fiducial markers for correlative light and electron microscopy. Sci. Rep. 2018, 8, 13625.

[24]

Li, T.; Moon, J.; Morrone, A. A.; Mecholsky, J. J.; Talham, D. R.; Adair, J. H. Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol–gel technique. Langmuir 1999, 15, 4328–4334.

[25]

Chen, J. Q.; Gao, X. S.; Zheng, Q.; Liu, J. B.; Meng, D. J.; Li, H. Y.; Cai, R.; Fan, H. Z.; Ji, Y. L.; Wu, X. C. Bottom-up synthesis of helical plasmonic nanorods and their application in generating circularly polarized luminescence. ACS Nano 2021, 15, 15114–15122.

[26]

Longhi, G.; Castiglioni, E.; Koshoubu, J.; Mazzeo, G.; Abbate, S. Circularly polarized luminescence: A review of experimental and theoretical aspects. Chirality 2016, 28, 696–707.

[27]

Sachs, J.; Günther, J. P.; Mark, A. G.; Fischer, P. Chiroptical spectroscopy of a freely diffusing single nanoparticle. Nat. Commun. 2020, 11, 4513.

[28]

Gao, H.; Chen, P. G.; Lo, T. W.; Jin, W.; Lei, D. Y. Selective excitation of polarization-steered chiral photoluminescence in single plasmonic nanohelicoids. Adv. Funct. Mater. 2021, 31, 2101502.

[29]

Tittl, A.; Yin, X. H.; Giessen, H.; Tian, X. D.; Tian, Z. Q.; Kremers, C.; Chigrin, D. N.; Liu, N. Plasmonic smart dust for probing local chemical reactions. Nano Lett. 2013, 13, 1816–1821.

Nano Research
Pages 8408-8414
Cite this article:
Gao H, Zhan C, Zhao T, et al. Chirality transfer induced circularly polarized luminescence of achiral dye molecules by plasmonic nanohelicoid. Nano Research, 2024, 17(9): 8408-8414. https://doi.org/10.1007/s12274-024-6781-4
Topics:

628

Views

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 14 March 2024
Revised: 14 May 2024
Accepted: 24 May 2024
Published: 27 June 2024
© Tsinghua University Press 2024
Return