AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strong and tough chitin hydrogel constructed by dehydration and rehydration strategy

Rui-Rui Liu1Li-Bo Mao1( )Shu-Hong Yu1,2( )
Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
Show Author Information

Graphical Abstract

Strong and tough chitin hydrogels are fabricated through a dehydration and rehydration strategy.

Abstract

As a renewable, biocompatible, biodegradable soft material, chitin hydrogels have better advantages in stability, antibacterial activity, antifouling, cost, immunogenicity, and so on than most polymer hydrogels. However, compared with other widely used polymer hydrogels with high strength and toughness, the practical applications of chitin-based hydrogels have been limited by their weak mechanical properties, such as cartilage repair and meniscus replacement. Here, we present the design and fabrication of chitin hydrogels with excellent mechanical strength and toughness by a dehydration and rehydration strategy. By sequential dehydration and rehydration processes, the crystalline domains in the chitin hydrogels can be properly controlled. With optimized crystallinity, the elastic modulus of the chitin hydrogels exceeds all previously reported values, and the fracture toughness is even comparable to some synthetic polymer hydrogels, while maintaining a high-water-content of about 80 wt.%. At the same water content, the mechanical properties of the chitin hydrogels are positively correlated with the hydrogel crystallinity, which proves that the change of mechanical properties of hydrogels is not simply dependent on weight concentration. The hydrogels can be further strengthened by incorporating other biopolymers that are intrinsically weak, which makes the hydrogels promising for applications in fields such as cartilage repair and meniscus replacement. Moreover, the hydrogels enable loading and release of water-soluble and poorly water-soluble drugs. This highly extendable strengthening and toughening strategy of chitin and chitin-based biopolymer hydrogels paves the way for their widely applications.

Electronic Supplementary Material

Download File(s)
6782_ESM.pdf (1.9 MB)

References

[1]

Chen, W.; Cao, P.; Liu, Y. S.; Yu, A. L.; Wang, D.; Chen, L.; Sundarraj, R.; Yuchi, Z. G.; Gong, Y.; Merzendorfer, H. et al. Structural basis for directional chitin biosynthesis. Nature 2022, 610, 402–408.

[2]

Huang, W.; Montroni, D.; Wang, T. F.; Murata, S.; Arakaki, A.; Nemoto, M.; Kisailus, D. Nanoarchitected tough biological composites from assembled chitinous scaffolds. Acc. Chem. Res. 2022, 55, 1360–1371.

[3]

Fratzl, P. Introduction: Sustainable materials. Chem. Rev. 2023, 123, 1841–1842.

[4]

Matveeva, V. G.; Bronstein, L. M. From renewable biomass to nanomaterials: Does biomass origin matter. Prog. Mater. Sci. 2022, 130, 100999.

[5]

Gow, N. A. R.; Lenardon, M. D. Architecture of the dynamic fungal cell wall. Nat. Rev. Microbiol. 2023, 21, 248–259.

[6]

Wan, M. C.; Qin, W.; Lei, C.; Li, Q. H.; Meng, M.; Fang, M.; Song, W.; Chen, J. H.; Tay, F.; Niu, L. N. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact. Mater. 2021, 6, 4255–4285.

[7]

Wang, Y. N.; Chen, L.; Wang, Y. Z.; Wang, X. Y.; Qian, D. Y.; Yan, J. H.; Sun, Z. Y.; Cui, P. F.; Yu, L. M.; Wu, J. et al. Marine biomaterials in biomedical nano/micro-systems. J. Nanobiotechnol. 2023, 21, 408.

[8]

Liu, R. R.; Shi, Q. Q.; Meng, Y. F.; Zhou, Y.; Mao, L. B.; Yu, S. H. Biomimetic chitin hydrogel via chemical transformation. Nano Res. 2024, 17, 771–777.

[9]

Liao, J.; Hou, B.; Huang, H. H. Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydr. Polym. 2022, 283, 119177.

[10]

Xu, D. D.; Huang, J. C.; Zhao, D.; Ding, B. B.; Zhang, L. N.; Cai, J. High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 2016, 28, 5844–5849.

[11]

Yuan, F. H.; Zhang, X. X.; Wu, K.; Li, Z. H. C.; Lin, Y. L.; Liang, X. Y.; Yang, Q.; Liu, T. Damping chitin hydrogels by harnessing insect-cuticle-inspired hierarchical structures. Cell Rep. Phys. Sci. 2023, 4, 101644.

[12]

Isobe, N.; Tsudome, M.; Kusumi, R.; Wada, M.; Uematsu, K.; Okada, S.; Deguchi, S. Moldable crystalline α-chitin hydrogel with toughness and transparency toward ocular applications. ACS Appl. Polym. Mater. 2020, 2, 1656–1663.

[13]

Jiang, X. Y.; Zeng, F. W.; Zhang, L. N.; Yu, A. X.; Lu, A. Engineered injectable cell-laden chitin/chitosan hydrogel with adhesion and biodegradability for calvarial defect regeneration. ACS Appl. Mater. Interfaces 2023, 15, 20761–20773.

[14]

Zhang, J. P.; Hu, Y.; Zhang, L. N.; Zhou, J. P.; Lu, A. Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 2023, 15, 8.

[15]

Lin, X. H.; Xing, X.; Li, S. S.; Wu, X. Y.; Jia, Q. Q.; Tu, H.; Bian, H. L.; Lu, A.; Zhang, L. N.; Yang, H. Y. et al. Anisotropic hybrid hydrogels constructed via the noncovalent assembly for biomimetic tissue scaffold. Adv. Funct. Mater. 2022, 32, 2112685.

[16]

Lin, X. H.; Zhang, L. N.; Duan, B. Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness. Mater. Horiz. 2021, 8, 2503–2512.

[17]

Yang, Y. W.; Zhang, S. C.; Bian, X. E.; Xia, T.; Lu, A.; Zhang, L. N.; Wang, Y. F.; Duan, B. In situ exfoliated silk fibroin nanoribbons enhanced chitin hydrogel for bile duct restoration. Chem. Eng. J. 2021, 422, 130088.

[18]

Huang, J. C.; Frauenlob, M.; Shibata, Y.; Wang, L.; Nakajima, T.; Nonoyama, T.; Tsuda, M.; Tanaka, S.; Kurokawa, T.; Gong, J. P. Chitin-based double-network hydrogel as potential superficial soft-tissue-repairing materials. Biomacromolecules 2020, 21, 4220–4230.

[19]

He, M.; Wang, Z. G.; Cao, Y.; Zhao, Y. T.; Duan, B.; Chen, Y.; Xu, M.; Zhang, L. N. Construction of chitin/pva composite hydrogels with jellyfish gel-like structure and their biocompatibility. Biomacromolecules 2014, 15, 3358–3365.

[20]

Hu, J. Y.; Li, J. H.; Jiang, J.; Wang, L. L.; Roth, J.; McGuinness, K. N.; Baum, J.; Dai, W.; Sun, Y.; Nanda, V. et al. Design of synthetic collagens that assemble into supramolecular banded fibers as a functional biomaterial testbed. Nat. Commun. 2022, 13, 6761.

[21]

Yuan, X. M.; Zhu, Z.; Xia, P. C.; Wang, Z. J.; Zhao, X.; Jiang, X.; Wang, T. M.; Gao, Q.; Xu, J.; Shan, D. B. et al. Tough gelatin hydrogel for tissue engineering. Adv. Sci. 2023, 10, 2301665.

[22]

Chen, W. Z.; Liu, K. Y.; Liao, X. Y.; Wu, J.; Chen, L.; Yang, Z. H.; Wang, X. P.; Liao, Y. X.; Fu, G. Q.; Yang, X. N. et al. Harmonizing thickness and permeability in bone tissue engineering: A novel silk fibroin membrane inspired by spider silk dynamics. Adv. Mater. 2024, 36, 2310697.

[23]

Hirano, S.; Yamaguchi, R. N-acetylchitosan gel: A polyhydrate of chitin. Biopolymers 1976, 15, 1685–1691.

[24]

Vachoud, L.; Zydowicz, N.; Domard, A. Formation and characterisation of a physical chitin gel. Carbohydr. Res. 1997, 302, 169–177.

[25]

Chang, C. Y.; Chen, S.; Zhang, L. N. Novel hydrogels prepared via direct dissolution of chitin at low temperature: Structure and biocompatibility. J. Mater. Chem. 2011, 21, 3865–3871.

[26]

Silva, S. S.; Mano, J. F.; Reis, R. L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 2017, 19, 1208–1220.

[27]

Zhong, Y.; Cai, J.; Zhang, L. N. A review of chitin solvents and their dissolution mechanisms. Chin. J. Polym. Sci. 2020, 38, 1047–1060.

[28]

Yu, L. S.; Liu, Z. D.; Tong, Z. R.; Ding, Y. H.; Qian, Z. F.; Wang, W. L.; Mao, Z. W.; Ding, Y. Sequential-crosslinking fibrin glue for rapid and reinforced hemostasis. Adv. Sci. 2024, 11, 2308171.

[29]

Zhao, Y.; Song, S. L.; Ren, X. Z.; Zhang, J. M.; Lin, Q.; Zhao, Y. L. Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 2022, 122, 5604–5640.

[30]

Wu, Y. C.; Zhang, Y.; Wu, H. D.; Wen, J.; Zhang, S.; Xing, W. Q.; Zhang, H. C.; Xue, H. G.; Gao, J. F.; Mai, Y. Solvent-exchange-assisted wet annealing: A new strategy for superstrong, tough, stretchable, and anti-fatigue hydrogels. Adv. Mater. 2023, 35, 2210624.

[31]

Liang, X. Y.; Chen, G. D.; Lin, S. T.; Zhang, J. J.; Wang, L.; Zhang, P.; Wang, Z. Y.; Wang, Z. B.; Lan, Y.; Ge, Q. et al. Anisotropically fatigue-resistant hydrogels. Adv. Mater. 2021, 33, 2102011.

[32]

Lin, S. T.; Liu, X. Y.; Liu, J.; Yuk, H.; Loh, H. C.; Parada, G. A.; Settens, C.; Song, J.; Masic, A.; McKinley, G. H. et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 2019, 5, eaau8528.

[33]

Hua, M. T.; Wu, S. W.; Ma, Y. F.; Zhao, Y. S.; Chen, Z. L.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X. Y.; He, X. M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021, 590, 594–599.

[34]

Fu, L. L.; Li, L.; Bian, Q. Y.; Xue, B.; Jin, J.; Li, J. Y.; Cao, Y.; Jiang, Q.; Li, H. B. Cartilage-like protein hydrogels engineered via entanglement. Nature 2023, 618, 740–747.

[35]

Kim, J.; Zhang, G. G.; Shi, M. X.; Suo, Z. G. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 2021, 374, 212–216.

[36]

Patterson, A. L. The scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982.

[37]

Tsurkan, M. V.; Voronkina, A.; Khrunyk, Y.; Wysokowski, M.; Petrenko, I.; Ehrlich, H. Progress in chitin analytics. Carbohydr. Polym. 2021, 252, 117204.

[38]

Osorio-Madrazo, A.; David, L.; Trombotto, S.; Lucas, J. M.; Peniche-Covas, C.; Domard, A. Kinetics study of the solid-state acid hydrolysis of chitosan: Evolution of the crystallinity and macromolecular structure. Biomacromolecules 2010, 11, 1376–1386.

[39]

Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Rosenberger, B.; Yu, G. H. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 2019, 5, eaaw5484.

[40]

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Shi, W.; Yu, G. H. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 2020, 32, 2007012.

[41]

Osaki, M.; Yonei, S.; Ueda, C.; Ikura, R.; Park, J.; Yamaguchi, H.; Harada, A.; Tanaka, M.; Takashima, Y. Mechanical properties with respect to water content of host-guest hydrogels. Macromolecules 2021, 54, 8067–8076.

[42]

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Yu, G. H. Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 2019, 52, 3244–3253.

[43]

Nakaoki, T.; Yamashita, H. Bound states of water in poly(vinyl alcohol) hydrogel prepared by repeated freezing and melting method. J. Mol. Struct. 2008, 875, 282–287.

[44]

Tamura, H.; Nagahama, H.; Tokura, S. Preparation of chitin hydrogel under mild conditions. Cellulose 2006, 13, 357–364.

[45]

Zhao, X. H.; Chen, X. Y.; Yuk, H.; Lin, S. T.; Liu, X. Y.; Parada, G. Soft materials by design: Unconventional polymer networks give extreme properties. Chem. Rev. 2021, 121, 4309–4372.

[46]

Yang, F. C.; Zhao, J. C.; Koshut, W. J.; Watt, J.; Riboh, J. C.; Gall, K.; Wiley, B. J. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 2020, 30, 2003451.

[47]

Kong, W. Q.; Wang, C. W.; Jia, C.; Kuang, Y. D.; Pastel, G.; Chen, C. J.; Chen, G. G.; He, S. M.; Huang, H.; Zhang, J. H. et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 2018, 30, 1801934.

[48]

Hua, M. T.; He, X. M. Soft-fiber-reinforced tough and fatigue resistant hydrogels. Matter 2021, 4, 1755–1757.

[49]

Bai, R. B.; Yang, Q. S.; Tang, J. D.; Morelle, X. P.; Vlassak, J.; Suo, Z. G. Fatigue fracture of tough hydrogels. Extreme Mech. Lett. 2017, 15, 91–96.

[50]

Tang, J. D.; Li, J. Y.; Vlassak, J. J.; Suo, Z. G. Fatigue fracture of hydrogels. Extreme Mech. Lett. 2017, 10, 24–31.

[51]

Zhang, W. L.; Hu, J.; Tang, J. D.; Wang, Z. T.; Wang, J. K.; Lu, T. Q.; Suo, Z. G. Fracture toughness and fatigue threshold of tough hydrogels. ACS Macro Lett. 2019, 8, 17–23.

[52]

Lin, S. T.; Liu, J.; Liu, X. Y.; Zhao, X. H. Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl. Acad. Sci. USA 2019, 116, 10244–10249.

[53]

Dai, X. Y.; Zhang, Y. Y.; Gao, L. N.; Bai, T.; Wang, W.; Cui, Y. L.; Liu, W. G. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 2015, 27, 3566–3571.

[54]

Kamata, H.; Akagi, Y.; Kayasuga-Kariya, Y.; Chung, U. I.; Sakai, T. “Nonswellable” hydrogel without mechanical hysteresis. Science 2014, 343, 873–875

[55]

Liu, X. Y.; Steiger, C.; Lin, S. T.; Parada, G. A.; Liu, J.; Chan, H. F.; Yuk, H.; Phan, N. V.; Collins, J.; Tamang, S. et al. Ingestible hydrogel device. Nat. Commun. 2019, 10, 493.

[56]

Liang, X. Y.; Li, Y. C.; Guo, B. L.; Zeng, Z. N.; Deng, K. F. R.; Zou, D. Z.; Xie, Y. X.; Xu, Y. N.; Shen, C.; Xu, X. H. Inherent tumor microenvironment-reversing hydrogels: Potentiating molecular therapy efficacy against drug-resistant tumors. Adv. Funct. Mater. 2024, 34, 2314772.

[57]

Liu, L.; Xian, Y. W.; Wang, W. T.; Huang, L.; Fan, J. H.; Ma, W. Z.; Li, Y. X.; Liu, H. M.; Yu, J. K.; Wu, D. C. Meniscus-inspired self-lubricating and friction-responsive hydrogels for protecting articular cartilage and improving exercise. ACS Nano 2023, 17, 24308–24319.

[58]

Freedman, B. R.; Kuttler, A.; Beckmann, N.; Nam, S.; Kent, D.; Schuleit, M.; Ramazani, F.; Accart, N.; Rock, A.; Li, J. Y. et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat. Biomed. Eng. 2022, 6, 1167–1179.

[59]

Zhang, R. N.; Liu, Y. N.; He, M. R.; Su, Y. L.; Zhao, X. T.; Elimelech, M.; Jiang, Z. Y. Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924.

[60]

Li, Z. C.; Liu, P.; Chen, S. W.; Liu, X. T.; Yu, Y. W.; Li, T. W.; Wan, Y.; Tang, N.; Liu, Y. X.; Gu, Y. X. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur. Polym. J. 2023, 190, 111997.

Nano Research
Pages 8192-8199
Cite this article:
Liu R-R, Mao L-B, Yu S-H. Strong and tough chitin hydrogel constructed by dehydration and rehydration strategy. Nano Research, 2024, 17(9): 8192-8199. https://doi.org/10.1007/s12274-024-6782-3
Topics:

423

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 April 2024
Revised: 23 May 2024
Accepted: 23 May 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return