AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flat Zn deposition at battery anode via an ultrathin robust interlayer

Yizhou Wang1,§Jianyu Chen2,§Zibo Chen2Qian He2Zhengnan Tian1Jin Zhao2( )Yanwen Ma2,3Husam N. Alshareef1( )
Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
State Key Laboratory of Organic Electronics and Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, China

§ Yizhou Wang and Jianyu Chen contributed equally to this work.

Show Author Information

Graphical Abstract

Kevlar membrane is employed as an interlayer to render flat Zn deposition on Zn metal anodes. The flat morphology of different deposition capacities and the significantly enhanced (002)-plane peak in X-ray diffraction demonstrate the dendrite-suppression effect of such Kevlar interlayer. This work provides a new solution for stabilizing Zn anodes with the crystal plane regulation strategy.

Abstract

Rechargeable aqueous zinc (Zn) ion batteries (AZIBs) using low-cost and safe Zn metal anodes are considered promising candidates for future grid-scale energy storage systems, but the Zn dendrite problem severely hinders the further prospects of AZIBs. Regulating Zn depositing behaviors toward horizontal alignment is highly effective and thus has received huge attention. However, such a strategy is usually based on previous substrate engineering, which requires complex preparation or expensive equipment. Therefore, it is essential to develop a novel solution that can realize horizontally aligned Zn flake deposition via easy operation and low cost. Herein, we report an ultrathin and robust Kevlar membrane as the interlayer to mechanically suppress Zn dendrite growth. Compared to the randomly distributed flaky dendrites in the control group, the deposited Zn sheets would grow into parallel alignment with the existence of such interlayer. As the dendrites are effectively suppressed, Zn||Cu asymmetric, Zn||Zn symmetric, and Zn||MnO2 full batteries using Kevlar interlayer deliver significantly improved cycling stabilities. Furthermore, the Zn||MnO2 pouch cell using a Kevlar interlayer delivers stable cycling performance and shows stable operation during multi-angle folding. We believe this work provides a new possibility for regulating Zn deposition from a crystallographic perspective.

Electronic Supplementary Material

Download File(s)
6783_ESM.pdf (1.7 MB)

References

[1]

Zhu, Z. X.; Jiang, T. L.; Ali, M.; Meng, Y. H.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable batteries for grid scale energy storage. Chem. Rev. 2022, 122, 16610–16751.

[2]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[3]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.

[4]

Zhang, T. P.; Shao, W. L.; Liu, S. Y.; Song, Z. H.; Mao, R. Y.; Jin, X.; Jian, X. G.; Hu, F. Y. A flexible design strategy to modify Ti3C2T x MXene surface terminations via nucleophilic substitution for long-life Li-S batteries. J. Energy Chem. 2022, 74, 349–358.

[5]

Ji, W. J.; Luo, B.; Wang, Q.; Yu, G. H.; Liu, Z. H.; Zhao, Z. W.; Zhao, R. R.; Wang, S. B.; Wang, X. W.; Zhang, B. et al. Revealing the influence of surface microstructure on Li wettability and interfacial ionic transportation for garnet-type electrolytes. Adv. Energy Mater. 2023, 13, 2300165.

[6]

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

[7]

Ming, J.; Guo, J.; Xia, C.; Wang, W. X.; Alshareef, H. N. Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R Rep. 2019, 135, 58–84.

[8]

Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

[9]

Xia, C.; Guo, J.; Lei, Y. J.; Liang, H. F.; Zhao, C.; Alshareef, H. N. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 2018, 30, 1705580.

[10]

Zhao, J.; Ren, H.; Liang, Q. H.; Yuan, D.; Xi, S. B.; Wu, C.; Manalasta, Jr. W.; Ma, J. M.; Fang, W.; Zheng, Y. et al. High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy 2019, 62, 94–102.

[11]

Yang, Q.; Li, L.; Hussain, T.; Wang, D. H.; Hui, L.; Guo, Y.; Liang, G. J.; Li, X. L.; Chen, Z.; Huang, Z. D. et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202112304.

[12]

Liang, G. J.; Zhu, J. X.; Yan, B. X.; Li, Q.; Chen, A.; Chen, Z.; Wang, X. Q.; Xiong, B.; Fan, J.; Xu, J. et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ. Sci. 2022, 15, 1086–1096.

[13]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[14]

Han, C.; Li, W. J.; Liu, H. K.; Dou, S. X.; Wang, J. Z. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 2020, 74, 104880.

[15]

He, H. B.; Qin, H. Y.; Wu, J.; Chen, X. F.; Huang, R. S.; Shen, F.; Wu, Z. R.; Chen, G. N.; Yin, S. B.; Liu, J. Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Mater. 2021, 43, 317–336.

[16]

Yi, Z. H.; Chen, G. Y.; Hou, F.; Wang, L. Q.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 2021, 11, 2003065.

[17]

Wang, Y. Z.; Guo, T. C.; Yin, J.; Tian, Z. N.; Ma, Y. C.; Liu, Z. X.; Zhu, Y. P.; Alshareef, H. N. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 2022, 34, 2106937.

[18]

Chen, J. Y.; Qiao, X.; Han, X. R.; Zhang, J. H.; Wu, H. B.; He, Q.; Chen, Z. B.; Shi, L.; Wang, Y. Z.; Xie, Y. N. et al. Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy 2022, 103, 107814.

[19]

Yin, J.; Wang, Y. Z.; Zhu, Y. P.; Jin, J. J.; Chen, C. L.; Yuan, Y. Y.; Bayhan, Z.; Salah, N.; Alhebshi, N. A.; Zhang, W. L. et al. Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy 2022, 99, 107331.

[20]

Liu, Y. Y.; Lu, X.; Lai, F. L.; Liu, T. X.; Shearing, P. R.; Parkin, I. P.; He, G. J.; Brett, D. J. L. Rechargeable aqueous Zn-based energy storage devices. Joule 2021, 5, 2845–2903.

[21]

Chu, Y. Z.; Ren, L. X.; Hu, Z. L.; Huang, C. D.; Luo, J. Y. An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries. Green Energy Environ. 2023, 8, 1006–1042.

[22]

Zhu, S. H.; Dai, Y. H.; Li, J. H.; Ye, C. M.; Zhou, W. H.; Yu, R. H.; Liao, X. B.; Li, J. T.; Zhang, W.; Zong, W. et al. Cathodic Zn underpotential deposition: An evitable degradation mechanism in aqueous zinc-ion batteries. Sci. Bull. 2022, 67, 1882–1889.

[23]

Yi, Z. H.; Liu, J. X.; Tan, S. D.; Sang, Z. Y.; Mao, J.; Yin, L. C.; Liu, X. G.; Wang, L. Q.; Hou, F.; Dou, S. X. et al. An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater. 2022, 34, 2203835.

[24]

Jin, Y.; Han, K. S.; Shao, Y. Y.; Sushko, M. L.; Xiao, J.; Pan, H. L.; Liu, J. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 2020, 30, 2003932.

[25]

Zhao, J. W.; Zhang, J.; Yang, W. H.; Chen, B. B.; Zhao, Z. M.; Qiu, H. Y.; Dong, S. M.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 2019, 57, 625–634

[26]

Wang, Y. Z.; Liu, X. Z.; Ge, R.; Moretti, M.; Yin, J.; Zhao, Z. M.; Valle-Pérez, A. U.; Liu, H.; Tian, Z. N.; Guo, T. C. et al. Peptide gel electrolytes for stabilized Zn metal anodes. ACS Nano 2024, 18, 164–177.

[27]

Wang, W. X.; Huang, G.; Wang, Y. Z.; Cao, Z.; Cavallo, L.; Hedhili, M. N.; Alshareef, H. N. Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv. Energy Mater. 2022, 12, 2102797.

[28]

Chen, G. Y.; Sang, Z. Y.; Cheng, J. H.; Tan, S. D.; Yi, Z. H.; Zhang, X. Q.; Si, W. P.; Yin, Y. X.; Liang, J.; Hou, F. Reversible and homogenous zinc deposition enabled by in-situ grown Cu particles on expanded graphite for dendrite-free and flexible zinc metal anodes. Energy Storage Mater. 2022, 50, 589–597.

[29]

Zeng, X. H.; Xie, K. X.; Liu, S. L.; Zhang, S. L.; Hao, J. N.; Liu, J. T.; Pang, W. K.; Liu, J. W.; Rao, P. H.; Wang, Q. H. et al. Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA·cm−2 and 30 mA·h·cm−2. Energy Environ. Sci. 2021, 14, 5947–5957.

[30]

Liu, M. K.; Cai, J. Y.; Ao, H. S.; Hou, Z. G.; Zhu, Y. C.; Qian, Y. T. NaTi2(PO4)3 solid-state electrolyte protection layer on Zn metal anode for superior long-life aqueous zinc-ion batteries. Adv. Funct. Mater. 2020, 30, 2004885.

[31]

Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

[32]

Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.

[33]

Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

[34]

Zheng, J. X.; Kim, M. S.; Tu, Z. Y.; Choudhury, S.; Tang, T.; Archer, L. A. Regulating electrodeposition morphology of lithium: Towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 2020, 49, 2701–2750.

[35]

Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.

[36]

Yuan, D.; Zhao, J.; Ren, H.; Chen, Y. Q.; Chua, R.; Jie, E. T. J.; Cai, Y.; Edison, E.; Manalastas, Jr. W.; Wong, M. W. et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. 2021, 133, 7289–7295.

[37]

Chen, Z. B.; Zhao, J.; He, Q.; Li, M. S.; Feng, S.; Wang, Y. Z.; Yuan, D.; Chen, J. Y.; Alshareef, H. N.; Ma, Y. W. Texture control of commercial Zn foils prolongs their reversibility as aqueous battery anodes. ACS Energy Lett. 2022, 7, 3564–3571.

[38]

Wang, Y. Z.; Xu, X. M.; Yin, J.; Huang, G.; Guo, T. C.; Tian, Z. N.; Alsaadi, R.; Zhu, Y. P.; Alshareef, H. N. MoS2-mediated epitaxial plating of Zn metal anodes. Adv. Mater. 2023, 35, 2208171.

[39]

Li, S. Y.; Fu, J.; Miao, G. X.; Wang, S. P.; Zhao, W. Y.; Wu, Z. C.; Zhang, Y. J.; Yang, X. W. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 2021, 33, 2008424.

[40]

Zheng, J. X.; Cao, Z.; Ming, F. W.; Liang, H. F.; Qi, Z. B.; Liu, W. Q.; Xia, C.; Chen, C. X.; Cavallo, L.; Wang, Z. C. et al. Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 2022, 7, 197–203.

[41]

Zhou, M.; Guo, S.; Li, J. L.; Luo, X. B.; Liu, Z. X.; Zhang, T. S.; Cao, X. X.; Long, M. Q.; Lu, B.; Pan, A. Q. et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 2021, 33, 2100187.

[42]

Zheng, J. X.; Deng, Y.; Yin, J. F.; Tang, T.; Garcia-Mendez, R.; Zhao, Q.; Archer, L. A. Textured electrodes: Manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv. Mater. 2022, 34, 2106867.

[43]

Nagy, K. S.; Kazemiabnavi, S.; Thornton, K.; Siegel, D. J. Thermodynamic overpotentials and nucleation rates for electrodeposition on metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 7954–7964.

[44]

Hong, Z. J.; Ahmad, Z.; Viswanathan, V. Design principles for dendrite suppression with porous polymer/aqueous solution hybrid electrolyte for Zn metal anodes. ACS Energy Lett. 2020, 5, 2466–2474.

[45]

Zhao, C. Y.; Gong, X. L.; Wang, S.; Jiang, W. Q.; Xuan, S. H. Shear stiffening gels for intelligent anti-impact applications. Cell Rep. Phys. Sci. 2020, 1, 100266.

[46]

Zhao, Y.; Li, X.; Shen, J. N.; Gao, C. J.; Van der Bruggen, B. The potential of Kevlar aramid nanofiber composite membranes. J. Mater. Chem. A 2020, 8, 7548–7568.

[47]

Zhang, Y.; Li, X.; Fan, L. S.; Shuai, Y.; Zhang, N. Q. Ultrathin and super-tough membrane for anti-dendrite separator in aqueous zinc-ion batteries. Cell Rep. Phys. Sci. 2022, 3, 100824.

[48]

Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. S. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 2020, 32, 2004240.

[49]

Zhao, C. Y.; Du, Y.; Guo, Z. K.; Chen, A. S.; Liu, N. N.; Lu, X. Y.; Fan, L. S.; Zhang, Y.; Zhang, N. Q. Missing-linker bifunctional MIL-125(Ti)-Zn interface modulation layer to simultaneously suppress hydrogen evolution reaction and dendrites for Zn metal anodes. Energy Storage Mater. 2022, 53, 322–330.

[50]

Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.

[51]

Liu, L. Y.; Wu, Y. C.; Huang, L.; Liu, K. S.; Duployer, B.; Rozier, P.; Taberna, P. L.; Simon, P. Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage. Adv. Energy Mater. 2021, 11, 2101287.

[52]

Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; Zhu, X. Y.; Zhu, R. J.; Xiong, Z. T.; He, P.; Zhou, H. S. Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv. Mater. 2021, 33, 2102415.

[53]

Wu, Y. C.; Koch, W. F.; Pratt, K. W. Proposed new electrolytic conductivity primary standards for KCl solutions. J. Res. Natl. Inst. Stand. Technol. 1991, 96, 191–201.

[54]

Liang, Y. C.; Ma, D. T.; Zhao, N.; Wang, Y. Y.; Yang, M.; Ruan, J. B.; Yang, G. H.; Mi, H. W.; He, C. X.; Zhang, P. X. Novel concept of separator design: Efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 2022, 32, 2112936.

[55]

Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X. F.; Wang, T. Y.; Wang, Y. Z.; Kang, F. Y.; Li, B. H.; Wang, G. X. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 9134–9142.

[56]

Peng, C.; Zhang, Y.; Yang, S. C.; Zhang, L. L.; Wang, Z. H. Flexible zincophilic polypyrrole paper interlayers for stable Zn metal anodes: Higher surface flatness promises better reversibility. Nano Energy 2022, 98, 107329.

[57]

Liang, Y. C.; Wang, Y. Y.; Mi, H. W.; Sun, L. N.; Ma, D. T.; Li, H. W.; He, C. X.; Zhang, P. X. Functionalized carbon nanofiber interlayer towards dendrite-free, Zn-ion batteries. Chem. Eng. J. 2021, 425, 131862.

[58]

Guo, Y.; Cai, W. L.; Lin, Y.; Zhang, Y. Y.; Luo, S.; Huang, K. X.; Wu, H.; Zhang, Y. An ion redistributor enabled by cost-effective weighing paper interlayer for dendrite free aqueous zinc-ion battery. Energy Storage Mater. 2022, 50, 580–588.

[59]

Li, Y. F.; Zhao, D. Y.; Cheng, J. J.; Lei, Y.; Zhang, Z. S.; Zhang, W. M.; Zhu, Q. C. A bifunctional nitrogen doped carbon network as the interlayer for dendrite-free Zn anode. Chem. Eng. J. 2023, 452, 139264.

[60]

Zhang, Y.; Zhao, T. Y.; Yang, S. C.; Zhang, Y. X.; Ma, Y.; Wang, Z. H. Flexible PEDOT:PSS nanopapers as “anion–cation regulation” synergistic interlayers enabling ultra-stable aqueous zinc-iodine batteries. J. Energy Chem. 2022, 75, 310–320.

[61]

Huang, J. Q.; Hou, Z.; Gao, P. S.; Yan, X. F.; Lin, X. Y.; Zhang, B. A freestanding hydroxylated carbon nanotube film boosting the stability of Zn metal anodes. Mater. Today Commun. 2022, 32, 103939.

[62]

Fan, H. F.; Wang, M.; Yin, Y. B.; Liu, Q. F.; Tang, B.; Sun, G. Q.; Wang, E. D.; Li, X. F. Tailoring interfacial Zn2+ coordination via a robust cation conductive film enables high performance zinc metal battery. Energy Storage Mater. 2022, 49, 380–389.

[63]

Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

Nano Research
Pages 8104-8111
Cite this article:
Wang Y, Chen J, Chen Z, et al. Flat Zn deposition at battery anode via an ultrathin robust interlayer. Nano Research, 2024, 17(9): 8104-8111. https://doi.org/10.1007/s12274-024-6783-2
Topics:

531

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 20 March 2024
Revised: 06 May 2024
Accepted: 26 May 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return