Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Multi-phase vertically aligned nanocomposite (MP-VAN) thin films represent a promising avenue for achieving complex multifunctionality, exploring novel interfacial phenomena, and enabling complex metamaterial designs and exploration. In this study, a novel self-assembled all-oxides three-phase VAN system was conceptualized and fabricated utilizing pulsed laser deposition (PLD) with a single composite target. Detailed microstructural analysis reveals the presence of three distinct phases: LiNbO3, CeO2–x, and LiNbCe1–xOy within the MP-VAN films. Subsequently, ferroelectric, dielectric, optical anisotropy, and magnetic properties were systematically investigated to showcase the multifunctionality inherent in these films. This work presents a pioneering approach to designing and realizing MP-VAN systems, and opens up opportunities for tailoring the complex three-dimensional (3D) physical properties and property coupling of VAN films towards diverse device applications.
Huang, J. J.; MacManus-Driscoll, J. L.; Wang, H. Y. New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films. J. Mater. Res. 2017, 32, 4054–4066.
MacManus-Driscoll, J. L. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 2010, 20, 2035–2045.
Huang, J. J.; Li, W. W.; Yang, H.; MacManus-Driscoll, J. L. Tailoring physical functionalities of complex oxides by vertically aligned nanocomposite thin-film design. MRS Bull. 2021, 46, 159–167.
Huang, J. J.; Phuah, X. L.; McClintock, L. M.; Padmanabhan, P.; Vikrant, K. S. N.; Wang, H.; Zhang, D.; Wang, H. H.; Lu, P.; Gao, X. Y. et al. Core–shell metallic alloy nanopillars-in-dielectric hybrid metamaterials with magneto-plasmonic coupling. Mater. Today 2021, 51, 39–47.
Zheng, H.; Wang, J.; Lofland, S. E.; Ma, Z.; Mohaddes-Ardabili, L.; Zhao, T.; Salamanca-Riba, L.; Shinde, S. R.; Ogale, S. B.; Bai, F. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 2004, 303, 661–663.
Wu, R.; Yun, C.; Wang, X. J.; Lu, P.; Li, W. W.; Lin, Y. S.; Choi, E. M.; Wang, H. Y.; MacManus-Driscoll, J. L. All-oxide nanocomposites to yield large, tunable perpendicular exchange bias above room temperature. ACS Appl. Mater. Interfaces 2018, 10, 42593–42602.
MacManus-Driscoll, J. L.; Wells, M. P.; Yun, C.; Lee, J. W.; Eom, C. B.; Schlom, D. G. New approaches for achieving more perfect transition metal oxide thin films. APL Mater. 2020, 8, 040904.
Su, Q.; Yoon, D.; Chen, A. P.; Khatkhatay, F.; Manthiram, A.; Wang, H. Y. Vertically aligned nanocomposite electrolytes with superior out-of-plane ionic conductivity for solid oxide fuel cells. J. Power Sources 2013, 242, 455–463.
Wang, G. L.; Sun, F.; Zhou, S. Y.; Zhang, Y. Z.; Zhang, F.; Wang, H. Y.; Huang, J. J.; Zheng, Y. Enhanced memristive performance via a vertically heterointerface in nanocomposite thin films for artificial synapses. ACS Appl. Mater. Interfaces 2024, 16, 12073–12084.
Lee, O.; Kursumovic, A.; Bi, Z.; Tsai, C.; Wang, H.; MacManus-Driscoll, J.L. Giant enhancement of polarization and strong improvement of retention in epitaxial Ba0.6Sr0.4TiO3-based nanocomposites. Adv. Mater. Interfaces 2017, 4, 1700336
Sun, X.; Huang, J. J.; Jian, J.; Fan, M.; Wang, H.; Li, Q.; Mac Manus-Driscoll, J. L.; Lu, P.; Zhang, X. H.; Wang, H. Y. Three-dimensional strain engineering in epitaxial vertically aligned nanocomposite thin films with tunable magnetotransport properties. Mater. Horiz. 2018, 5, 536–544.
Huang, J. J.; Li, L. G.; Lu, P.; Qi, Z. M.; Sun, X.; Zhang, X. H.; Wang, H. Y. Self-assembled Co-BaZrO3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars. Nanoscale 2017, 9, 7970–7976.
Huang, J.; Wang, X.; Phuah, X. L.; Lu, P.; Qi, Z.; Wang, H. Plasmonic Cu nanostructures in ZnO as hyperbolic metamaterial thin films. Mater. Today Nano 2019, 8, 100052.
Misra, S.; Wang, H. Y. Review on the growth, properties and applications of self-assembled oxide-metal vertically aligned nanocomposite thin films-current and future perspectives. Mater. Horiz. 2021, 8, 869–884.
Wang, X. J.; Wang, H. Y. Self-assembled nitride-metal nanocomposites: Recent progress and future prospects. Nanoscale 2020, 12, 20564–20579.
Zhang, D.; Wang, H. Y. Self-assembled metal-dielectric hybrid metamaterials in vertically aligned nanocomposite form with tailorable optical properties and coupled multifunctionalities. Adv. Photonics Res. 2021, 2, 2000174.
Sun, X.; MacManus-Driscoll, J. L.; Wang, H. Y. Spontaneous ordering of oxide-oxide epitaxial vertically aligned nanocomposite thin films. Annu. Rev. Mater. Res. 2020, 50, 229–253.
Huang, J. J.; Gellatly, A.; Kauffmann, A.; Sun, X.; Wang, H. Y. Exchange bias effect along vertical interfaces in La0.7Sr0.3MnO3: NiO vertically aligned nanocomposite thin films integrated on silicon substrates. Cryst. Growth Des. 2018, 18, 4388–4394.
Yan, X. B.; He, H. D.; Liu, G. J.; Zhao, Z.; Pei, Y. F.; Liu, P.; Zhao, J. H.; Zhou, Z. Y.; Wang, K. Y.; Yan, H. W. A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3-CeO2 films on silicon. Adv. Mater. 2022, 34, 2110343.
Huang, J. J.; Wang, H.; Wang, X. J.; Gao, X. Y.; Liu, J. C.; Wang, H. Y. Exchange bias in a La0.67Sr0.33MnO3/NiO heterointerface integrated on a flexible mica substrate. ACS Appl. Mater. Interfaces 2020, 12, 39920–39925.
Tian, H. X.; Wang, G. L.; Wang, F.; Jiang, C. M.; Huang, J. J. Si integration of La0.7Sr0.3MnO3: BiFeO3 nanocomposite thin films with strong exchange bias coupling. Appl. Phys. Lett. 2022, 121, 022403.
Huang, J. J.; Chen, W. J. Flexible strategy of epitaxial oxide thin films. iScience 2022, 25, 105041.
Huang, J. J.; Zhang, D.; Liu, J. C.; Wang, H. Y. Freestanding La0.7Sr0.3MnO3: NiO vertically aligned nanocomposite thin films for flexible perpendicular interfacial exchange coupling. Mater. Res. Lett. 2022, 10, 287–294.
Fan, M.; Zhang, W. R.; Jian, J.; Huang, J. J.; Wang, H. Y. Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3: LaFeO3 nanocomposite thin films. APL Mater. 2016, 4, 076105.
Huang, J. J.; Wang, H.; Qi, Z. M.; Lu, P.; Zhang, D.; Zhang, B.; He, Z. H.; Wang, H. Y. Multifunctional metal-oxide nanocomposite thin film with plasmonic Au nanopillars embedded in magnetic La0.67Sr0.33MnO3 Matrix. Nano Lett. 2021, 21, 1032–1039.
Enriquez, E.; Lu, P.; Li, L. G.; Zhang, B.; Wang, H. Y.; Jia, Q. X.; Chen, A. P. Reducing leakage current and enhancing polarization in multiferroic 3D super-nanocomposites by microstructure engineering. Nanotechnology 2022, 33, 405604.
Huang, J. J.; Zhang, D.; Liu, J. C.; Dou, H. Y.; Wang, H. Y. Double-exchange bias modulation under horizontal and perpendicular field directions by 3D nanocomposite design. ACS Appl. Mater. Interfaces 2021, 13, 50141–50148.
Song, J. W.; Zhang, D.; Lu, P.; Zhang, Y. Z.; Wang, H. H.; Dou, H. Y.; Xu, X. S.; Deitz, J.; Zhang, X. H.; Wang, H. Y. Self-assembled complex three-phase core–shell nanostructure of Au-CoFe2-TiN with a magneto-optical coupling effect. ACS Appl. Mater. Interfaces 2023, 15, 37810–37817.
Misra, S.; Li, L. G.; Zhang, D.; Jian, J.; Qi, Z. M.; Fan, M.; Chen, H. T.; Zhang, X. H.; Wang, H. Y. Self-assembled ordered three-phase Au-BaTiO3-ZnO vertically aligned nanocomposites achieved by a templating method. Adv. Mater. 2019, 31, 1806529.
Wang, X. J.; Jian, J.; Wang, H. H.; Liu, J. C.; Pachaury, Y.; Lu, P.; Rutherford, B. X.; Gao, X. Y.; Xu, X. S.; El-Azab, A. et al. Nitride-oxide-metal heterostructure with self-assembled core-shell nanopillar arrays: Effect of ordering on magneto-optical properties. Small 2021, 17, 2007222.
Wu, R.; Zhang, D.; Maity, T.; Lu, P.; Yang, J.; Gao, X. Y.; Zhao, S. S.; Wei, X. C.; Zeng, H.; Kursumovic, A. et al. Self-biased magnetoelectric switching at room temperature in three-phase ferroelectric–antiferromagnetic–ferrimagnetic nanocomposites. Nat. Electron. 2021, 4, 333–341.
Krawczyk, M.; Holdynski, M.; Lisowski, W.; Sobczak, J. W.; Jablonski, A. Electron inelastic mean free paths in cerium dioxide. Appl. Surf. Sci. 2015, 341, 196–202.
Nassau, K.; Levinstein, H. J.; Loiacono, G. M. Ferroelectric lithium niobate 1. Growth, domain structure, dislocations and etching. J. Phys. Chem. Sol. 1966, 27, 983–988.
Simões, A. Z.; Zaghete, M. A.; Stojanovic, B. D.; Gonzalez, A. H.; Riccardi, C. S.; Cantoni, M.; Varela, J. A. Influence of oxygen atmosphere on crystallization and properties of LiNbO3 thin films. J. Eur. Ceram. Soc. 2004, 24, 1607–1613.
Østreng, E.; Sønsteby, H. H.; Sajavaara, T.; Nilsen, O.; Fjellvåg, H. Atomic layer deposition of ferroelectric LiNbO3. J. Mater. Chem. C 2013, 1, 4283–4290.
Hao, L. Z.; Li, Y. R.; Zhu, J.; Wu, Z. P.; Long, F. Q.; Liu, X. Z.; Zhang, W. L. Microstructure and memory characteristics of ferroelectric LiNbO3/ZnO composite thin films on Pt/TiO2/SiO2/Si substrates. J. Alloys Compd. 2014, 590, 205–209.
Huang, J. J.; Wang, H.; Li, D. F.; Qi, Z. M.; Zhang, D.; Lu, P.; Chen, H. T.; Yarotski, D. A.; Lin, P. T.; Zhang, X. H. et al. Room-temperature ferroelectric LiNb6Ba5Ti4O30 spinel phase in a nanocomposite thin film form for nonlinear photonics. ACS Appl. Mater. Interfaces 2020, 12, 23076–23083.
Harrington, S. A.; Zhai, J. Y.; Denev, S.; Gopalan, V.; Wang, H. Y.; Bi, Z. X.; Redfern, S. A. T.; Baek, S. H.; Bark, C. W.; Eom, C. B. et al. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 2011, 6, 491–495
Chen, M. J.; Ning, X. K.; Wang, S. F.; Fu, G. S. Enhanced polarization and dielectricity in BaTiO3: NiO nanocomposite films modulated by the microstructure. RSC Adv. 2017, 7, 38231–38242.
Lee, O.; Harrington, S. A.; Kursumovic, A.; Defay, E.; Wang, H. Y.; Bi, Z. X.; Tsai, C. F.; Yan, L.; Jia, Q. X.; MacManus-Driscoll, J. L. Extremely high tunability and low loss in nanoscaffold ferroelectric films. Nano Lett. 2012, 12, 4311–4317.
Coey, M.; Ackland, K.; Venkatesan, M.; Sen, S. Collective magnetic response of CeO2 nanoparticles. Nat. Phys. 2016, 12, 694–699.
Hass, G.; Ramsey, J. B.; Thun, R. Optical properties and structure of cerium dioxide films. J. Opt. Soc. Am. 1958, 48, 324–327.
Zelmon, D. E.; Small, D. L.; Jundt, D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B 1997, 14, 3319–3322.
Huang, J. J.; Jin, T. N.; Misra, S.; Wang, H.; Qi, Z. M.; Dai, Y. M.; Sun, X.; Li, L. G.; Okkema, J.; Chen, H. T. et al. Tailorable optical response of Au-LiNbO3 hybrid metamaterial thin films for optical waveguide applications. Adv. Opt. Mater. 2018, 6, 1800510.