AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-assembled all-oxides three-phase vertically aligned nanocomposite thin film with multifunctionality

Jijie Huang1,2( )Yuan Fang1Ping Lu3Juanjuan Lu2Haiyan Wang2,4( )
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
Show Author Information

Graphical Abstract

A novel self-assembled all-oxides three-phase vertically aligned nanocomposite (VAN) system has been conceptualized and fabricated with functionalities, such as ferroelectric, dielectric, optical anisotropy, and magnetic properties.

Abstract

Multi-phase vertically aligned nanocomposite (MP-VAN) thin films represent a promising avenue for achieving complex multifunctionality, exploring novel interfacial phenomena, and enabling complex metamaterial designs and exploration. In this study, a novel self-assembled all-oxides three-phase VAN system was conceptualized and fabricated utilizing pulsed laser deposition (PLD) with a single composite target. Detailed microstructural analysis reveals the presence of three distinct phases: LiNbO3, CeO2–x, and LiNbCe1–xOy within the MP-VAN films. Subsequently, ferroelectric, dielectric, optical anisotropy, and magnetic properties were systematically investigated to showcase the multifunctionality inherent in these films. This work presents a pioneering approach to designing and realizing MP-VAN systems, and opens up opportunities for tailoring the complex three-dimensional (3D) physical properties and property coupling of VAN films towards diverse device applications.

Electronic Supplementary Material

Download File(s)
6785_ESM.pdf (1.2 MB)

References

[1]

Huang, J. J.; MacManus-Driscoll, J. L.; Wang, H. Y. New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films. J. Mater. Res. 2017, 32, 4054–4066.

[2]

MacManus-Driscoll, J. L. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 2010, 20, 2035–2045.

[3]

Huang, J. J.; Li, W. W.; Yang, H.; MacManus-Driscoll, J. L. Tailoring physical functionalities of complex oxides by vertically aligned nanocomposite thin-film design. MRS Bull. 2021, 46, 159–167.

[4]

Huang, J. J.; Phuah, X. L.; McClintock, L. M.; Padmanabhan, P.; Vikrant, K. S. N.; Wang, H.; Zhang, D.; Wang, H. H.; Lu, P.; Gao, X. Y. et al. Core–shell metallic alloy nanopillars-in-dielectric hybrid metamaterials with magneto-plasmonic coupling. Mater. Today 2021, 51, 39–47.

[5]

Zheng, H.; Wang, J.; Lofland, S. E.; Ma, Z.; Mohaddes-Ardabili, L.; Zhao, T.; Salamanca-Riba, L.; Shinde, S. R.; Ogale, S. B.; Bai, F. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 2004, 303, 661–663.

[6]

Wu, R.; Yun, C.; Wang, X. J.; Lu, P.; Li, W. W.; Lin, Y. S.; Choi, E. M.; Wang, H. Y.; MacManus-Driscoll, J. L. All-oxide nanocomposites to yield large, tunable perpendicular exchange bias above room temperature. ACS Appl. Mater. Interfaces 2018, 10, 42593–42602.

[7]

MacManus-Driscoll, J. L.; Wells, M. P.; Yun, C.; Lee, J. W.; Eom, C. B.; Schlom, D. G. New approaches for achieving more perfect transition metal oxide thin films. APL Mater. 2020, 8, 040904.

[8]

Su, Q.; Yoon, D.; Chen, A. P.; Khatkhatay, F.; Manthiram, A.; Wang, H. Y. Vertically aligned nanocomposite electrolytes with superior out-of-plane ionic conductivity for solid oxide fuel cells. J. Power Sources 2013, 242, 455–463.

[9]

Wang, G. L.; Sun, F.; Zhou, S. Y.; Zhang, Y. Z.; Zhang, F.; Wang, H. Y.; Huang, J. J.; Zheng, Y. Enhanced memristive performance via a vertically heterointerface in nanocomposite thin films for artificial synapses. ACS Appl. Mater. Interfaces 2024, 16, 12073–12084.

[10]

Lee, O.; Kursumovic, A.; Bi, Z.; Tsai, C.; Wang, H.; MacManus-Driscoll, J.L. Giant enhancement of polarization and strong improvement of retention in epitaxial Ba0.6Sr0.4TiO3-based nanocomposites. Adv. Mater. Interfaces 2017, 4, 1700336

[11]

Sun, X.; Huang, J. J.; Jian, J.; Fan, M.; Wang, H.; Li, Q.; Mac Manus-Driscoll, J. L.; Lu, P.; Zhang, X. H.; Wang, H. Y. Three-dimensional strain engineering in epitaxial vertically aligned nanocomposite thin films with tunable magnetotransport properties. Mater. Horiz. 2018, 5, 536–544.

[12]

Huang, J. J.; Li, L. G.; Lu, P.; Qi, Z. M.; Sun, X.; Zhang, X. H.; Wang, H. Y. Self-assembled Co-BaZrO3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars. Nanoscale 2017, 9, 7970–7976.

[13]

Huang, J.; Wang, X.; Phuah, X. L.; Lu, P.; Qi, Z.; Wang, H. Plasmonic Cu nanostructures in ZnO as hyperbolic metamaterial thin films. Mater. Today Nano 2019, 8, 100052.

[14]

Misra, S.; Wang, H. Y. Review on the growth, properties and applications of self-assembled oxide-metal vertically aligned nanocomposite thin films-current and future perspectives. Mater. Horiz. 2021, 8, 869–884.

[15]

Wang, X. J.; Wang, H. Y. Self-assembled nitride-metal nanocomposites: Recent progress and future prospects. Nanoscale 2020, 12, 20564–20579.

[16]

Zhang, D.; Wang, H. Y. Self-assembled metal-dielectric hybrid metamaterials in vertically aligned nanocomposite form with tailorable optical properties and coupled multifunctionalities. Adv. Photonics Res. 2021, 2, 2000174.

[17]

Sun, X.; MacManus-Driscoll, J. L.; Wang, H. Y. Spontaneous ordering of oxide-oxide epitaxial vertically aligned nanocomposite thin films. Annu. Rev. Mater. Res. 2020, 50, 229–253.

[18]

Huang, J. J.; Gellatly, A.; Kauffmann, A.; Sun, X.; Wang, H. Y. Exchange bias effect along vertical interfaces in La0.7Sr0.3MnO3: NiO vertically aligned nanocomposite thin films integrated on silicon substrates. Cryst. Growth Des. 2018, 18, 4388–4394.

[19]

Yan, X. B.; He, H. D.; Liu, G. J.; Zhao, Z.; Pei, Y. F.; Liu, P.; Zhao, J. H.; Zhou, Z. Y.; Wang, K. Y.; Yan, H. W. A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3-CeO2 films on silicon. Adv. Mater. 2022, 34, 2110343.

[20]

Huang, J. J.; Wang, H.; Wang, X. J.; Gao, X. Y.; Liu, J. C.; Wang, H. Y. Exchange bias in a La0.67Sr0.33MnO3/NiO heterointerface integrated on a flexible mica substrate. ACS Appl. Mater. Interfaces 2020, 12, 39920–39925.

[21]

Tian, H. X.; Wang, G. L.; Wang, F.; Jiang, C. M.; Huang, J. J. Si integration of La0.7Sr0.3MnO3: BiFeO3 nanocomposite thin films with strong exchange bias coupling. Appl. Phys. Lett. 2022, 121, 022403.

[22]

Huang, J. J.; Chen, W. J. Flexible strategy of epitaxial oxide thin films. iScience 2022, 25, 105041.

[23]

Huang, J. J.; Zhang, D.; Liu, J. C.; Wang, H. Y. Freestanding La0.7Sr0.3MnO3: NiO vertically aligned nanocomposite thin films for flexible perpendicular interfacial exchange coupling. Mater. Res. Lett. 2022, 10, 287–294.

[24]

Fan, M.; Zhang, W. R.; Jian, J.; Huang, J. J.; Wang, H. Y. Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3: LaFeO3 nanocomposite thin films. APL Mater. 2016, 4, 076105.

[25]

Huang, J. J.; Wang, H.; Qi, Z. M.; Lu, P.; Zhang, D.; Zhang, B.; He, Z. H.; Wang, H. Y. Multifunctional metal-oxide nanocomposite thin film with plasmonic Au nanopillars embedded in magnetic La0.67Sr0.33MnO3 Matrix. Nano Lett. 2021, 21, 1032–1039.

[26]

Enriquez, E.; Lu, P.; Li, L. G.; Zhang, B.; Wang, H. Y.; Jia, Q. X.; Chen, A. P. Reducing leakage current and enhancing polarization in multiferroic 3D super-nanocomposites by microstructure engineering. Nanotechnology 2022, 33, 405604.

[27]

Huang, J. J.; Zhang, D.; Liu, J. C.; Dou, H. Y.; Wang, H. Y. Double-exchange bias modulation under horizontal and perpendicular field directions by 3D nanocomposite design. ACS Appl. Mater. Interfaces 2021, 13, 50141–50148.

[28]

Song, J. W.; Zhang, D.; Lu, P.; Zhang, Y. Z.; Wang, H. H.; Dou, H. Y.; Xu, X. S.; Deitz, J.; Zhang, X. H.; Wang, H. Y. Self-assembled complex three-phase core–shell nanostructure of Au-CoFe2-TiN with a magneto-optical coupling effect. ACS Appl. Mater. Interfaces 2023, 15, 37810–37817.

[29]

Misra, S.; Li, L. G.; Zhang, D.; Jian, J.; Qi, Z. M.; Fan, M.; Chen, H. T.; Zhang, X. H.; Wang, H. Y. Self-assembled ordered three-phase Au-BaTiO3-ZnO vertically aligned nanocomposites achieved by a templating method. Adv. Mater. 2019, 31, 1806529.

[30]

Wang, X. J.; Jian, J.; Wang, H. H.; Liu, J. C.; Pachaury, Y.; Lu, P.; Rutherford, B. X.; Gao, X. Y.; Xu, X. S.; El-Azab, A. et al. Nitride-oxide-metal heterostructure with self-assembled core-shell nanopillar arrays: Effect of ordering on magneto-optical properties. Small 2021, 17, 2007222.

[31]

Wu, R.; Zhang, D.; Maity, T.; Lu, P.; Yang, J.; Gao, X. Y.; Zhao, S. S.; Wei, X. C.; Zeng, H.; Kursumovic, A. et al. Self-biased magnetoelectric switching at room temperature in three-phase ferroelectric–antiferromagnetic–ferrimagnetic nanocomposites. Nat. Electron. 2021, 4, 333–341.

[32]

Krawczyk, M.; Holdynski, M.; Lisowski, W.; Sobczak, J. W.; Jablonski, A. Electron inelastic mean free paths in cerium dioxide. Appl. Surf. Sci. 2015, 341, 196–202.

[33]

Nassau, K.; Levinstein, H. J.; Loiacono, G. M. Ferroelectric lithium niobate 1. Growth, domain structure, dislocations and etching. J. Phys. Chem. Sol. 1966, 27, 983–988.

[34]

Simões, A. Z.; Zaghete, M. A.; Stojanovic, B. D.; Gonzalez, A. H.; Riccardi, C. S.; Cantoni, M.; Varela, J. A. Influence of oxygen atmosphere on crystallization and properties of LiNbO3 thin films. J. Eur. Ceram. Soc. 2004, 24, 1607–1613.

[35]

Østreng, E.; Sønsteby, H. H.; Sajavaara, T.; Nilsen, O.; Fjellvåg, H. Atomic layer deposition of ferroelectric LiNbO3. J. Mater. Chem. C 2013, 1, 4283–4290.

[36]

Hao, L. Z.; Li, Y. R.; Zhu, J.; Wu, Z. P.; Long, F. Q.; Liu, X. Z.; Zhang, W. L. Microstructure and memory characteristics of ferroelectric LiNbO3/ZnO composite thin films on Pt/TiO2/SiO2/Si substrates. J. Alloys Compd. 2014, 590, 205–209.

[37]

Huang, J. J.; Wang, H.; Li, D. F.; Qi, Z. M.; Zhang, D.; Lu, P.; Chen, H. T.; Yarotski, D. A.; Lin, P. T.; Zhang, X. H. et al. Room-temperature ferroelectric LiNb6Ba5Ti4O30 spinel phase in a nanocomposite thin film form for nonlinear photonics. ACS Appl. Mater. Interfaces 2020, 12, 23076–23083.

[38]

Harrington, S. A.; Zhai, J. Y.; Denev, S.; Gopalan, V.; Wang, H. Y.; Bi, Z. X.; Redfern, S. A. T.; Baek, S. H.; Bark, C. W.; Eom, C. B. et al. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 2011, 6, 491–495

[39]

Chen, M. J.; Ning, X. K.; Wang, S. F.; Fu, G. S. Enhanced polarization and dielectricity in BaTiO3: NiO nanocomposite films modulated by the microstructure. RSC Adv. 2017, 7, 38231–38242.

[40]

Lee, O.; Harrington, S. A.; Kursumovic, A.; Defay, E.; Wang, H. Y.; Bi, Z. X.; Tsai, C. F.; Yan, L.; Jia, Q. X.; MacManus-Driscoll, J. L. Extremely high tunability and low loss in nanoscaffold ferroelectric films. Nano Lett. 2012, 12, 4311–4317.

[41]

Coey, M.; Ackland, K.; Venkatesan, M.; Sen, S. Collective magnetic response of CeO2 nanoparticles. Nat. Phys. 2016, 12, 694–699.

[42]

Hass, G.; Ramsey, J. B.; Thun, R. Optical properties and structure of cerium dioxide films. J. Opt. Soc. Am. 1958, 48, 324–327.

[43]

Zelmon, D. E.; Small, D. L.; Jundt, D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B 1997, 14, 3319–3322.

[44]

Huang, J. J.; Jin, T. N.; Misra, S.; Wang, H.; Qi, Z. M.; Dai, Y. M.; Sun, X.; Li, L. G.; Okkema, J.; Chen, H. T. et al. Tailorable optical response of Au-LiNbO3 hybrid metamaterial thin films for optical waveguide applications. Adv. Opt. Mater. 2018, 6, 1800510.

Nano Research
Pages 8226-8232
Cite this article:
Huang J, Fang Y, Lu P, et al. Self-assembled all-oxides three-phase vertically aligned nanocomposite thin film with multifunctionality. Nano Research, 2024, 17(9): 8226-8232. https://doi.org/10.1007/s12274-024-6785-0
Topics:

401

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 March 2024
Revised: 13 May 2024
Accepted: 25 May 2024
Published: 01 July 2024
© Tsinghua University Press 2024
Return