AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fluorescent carbon dots synthesized in solid phase and air for application in LEDs

Wei-Jie ZhengZhao-Nan SunYi-Ming WangHuan-Ming Xiong( )
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
Show Author Information

Graphical Abstract

Fluorescent carbon dots (CDs) are synthesized in solid phase and air, with inorganic salts used as dispersants and catalysts simultaneously, which exhibit tunable luminescent colors for application in the long-life white light emitting devices (WLEDs).

Abstract

Carbon dots (CDs) have been widely adopted as optical materials because of their excellent luminescent properties. However, most of the reported synthetic methods are conducted in solvents, especially hydrothermal/solvothermal reactions, leading to intractable problems such as toxic and flammable solvents, complex and inseparable by-products, and dangerously high pressures and temperatures. Solid-phase synthesis of CDs in air is an effective solution to overcome the above issues, but solid reactions always result in uncontrolled growth and agglomeration of nanoparticles. In this study, some inorganic salts are selected as catalysts for synthesizing CDs in solid states and air, which also play as dispersants to hinder CDs aggregation. In the meantime, some aromatic derivatives containing hydroxyl and amino groups are chosen as carbon sources, ground with the optimized catalyst, and then heated together in air. The production yields are affected by the reaction time and reactant ratio, while the graphitization degrees of the CDs are determined by the reaction temperature. The IG/ID value of their Raman spectra increases from 0.59 to 0.85, and the particle size decreases from 2.5 to 1.4 nm when the synthesis temperature is increased from 200 to 280 °C. The as-prepared CDs show emission peaks ranging from 366 to 606 nm, with the photoluminescence (PL) quantum yield up to 53%. Their emission color variation mainly results from different carbon sources, which can be ascribed to the differences in the element composition, functional groups, and graphitic nitrogen content of these CDs. By dispersing CDs of different concentrations into polyvinyl alcohol (PVA) and combining them with blue LEDs, cold, standard, and warm white light emitting devices (WLEDs) are prepared, with a color rendering index (CRI) up to 84. Since the as-prepared CDs have antioxidant ability at high temperature, the as-prepared WLEDs have long lifespans, remaining the effective white luminescence after 72 h continuous work.

Electronic Supplementary Material

Download File(s)
6787_ESM.pdf (469.5 KB)

References

[1]

Yan, Y. B.; Gong, J.; Chen, J.; Zeng, Z. P.; Huang, W.; Pu, K. Y.; Liu, J. Y.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater. 2019, 31, 1808283.

[2]

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

[3]

Liu, J. J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179–2195.

[4]

Bartelmess, J.; Quinn, S. J.; Giordani, S. Carbon nanomaterials: Multi-functional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev. 2015, 44, 4672–4698.

[5]

Liu, J.; Kong, T. Y.; Xiong, H. M. Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk. Adv. Mater. 2022, 34, 2200152.

[6]

Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2019, 12, 1669–1674.

[7]

Jiang, L.; Cai, H.; Zhou, W. W.; Li, Z. J.; Zhang, L.; Bi, H. RNA-targeting carbon dots for live-cell imaging of granule dynamics. Adv. Mater. 2023, 35, 2210776.

[8]

Li, P. F.; Sun, L.; Xue, S. S.; Qu, D.; An, L.; Wang, X. Y.; Sun, Z. C. Recent advances of carbon dots as new antimicrobial agents. SmartMat 2022, 3, 226–248.

[9]

Zhang, Y. Q.; Liu, K. X.; Yu, J. K.; Chen, H. F.; Fu, R.; Zhu, S. Q.; Chen, Z. Q.; Wang, S. P.; Lu, S. Y. Single stain hyperspectral imaging for accurate fungal pathogens identification and quantification. Nano Res. 2022, 15, 6399–6406.

[10]

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

[11]

Ding, H. Z.; Xu, J. H.; Jiang, L.; Dong, C.; Meng, Q.; ur Rehman, S.; Wang, J. F.; Ge, Z. S.; Osipov, V. Y.; Bi, H. Fluorine-defects induced solid-state red emission of carbon dots with an excellent thermosensitivity. Chin. Chem. Lett. 2021, 32, 3646–3651.

[12]

Yang, F.; LeCroy, G. E.; Wang, P.; Liang, W. X.; Chen, J. J.; Fernando, K. A. S.; Bunker, C. E.; Qian, H. J.; Sun, Y. P. Functionalization of carbon nanoparticles and defunctionalization—toward structural and mechanistic elucidation of carbon “quantum” dots. J. Phys. Chem. C 2016, 120, 25604–25611.

[13]

Wang, B. Y.; Lu, S. Y. The light of carbon dots: From mechanism to applications. Matter. 2022, 5, 110–149.

[14]

Tao, S. Y.; Zhou, C. J.; Kang, C. Y.; Zhu, S. J.; Feng, T. L.; Zhang, S. T.; Ding, Z. Y.; Zheng, C. Y.; Xia, C. L.; Yang, B. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. Light Sci. Appl. 2022, 11, 56.

[15]

Ðorđević, L.; Arcudi, F.; D’Urso, A.; Cacioppo, M.; Micali, N.; Bürgi, T.; Purrello, R.; Prato, M. Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat. Commun. 2018, 9, 3442.

[16]

Ru, Y.; Ai, L.; Jia, T. T.; Liu, X. J.; Lu, S. Y.; Tang, Z. Y.; Yang, B. Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today 2020, 34, 100953.

[17]

Ding, H.; Zhou, X. X.; Wei, J. S.; Li, X. B.; Qin, B. T.; Chen, X. B.; Xiong, H. M. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon. 2020, 167, 322–344.

[18]

Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

[19]

Liu, J. J.; Li, D. W.; Zhang, K.; Yang, M. X.; Sun, H. C.; Yang, B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small 2018, 14, 1703919.

[20]

Jiang, K.; Wang, Y. H.; Gao, X. L.; Cai, C. Z.; Lin, H. W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem., Int. Ed. 2018, 57, 6216–6220.

[21]

Ji, C. Y.; Han, Q. R.; Zhou, Y. Q.; Wu, J. J.; Shi, W. Q.; Gao, L. P.; Leblanc, R. M.; Peng, Z. L. Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors. Carbon 2022, 192, 198–208.

[22]

Liu, X. X.; Yang, C. L.; Zheng, B. Z.; Dai, J. Y.; Yan, L.; Zhuang, Z. J.; Du, J.; Guo, Y.; Xiao, D. Green anhydrous synthesis of hydrophilic carbon dots on large-scale and their application for broad fluorescent pH sensing. Sens. Actuat. B Chem. 2018, 255, 572–579.

[23]

Xu, W. J.; Zeng, F. H.; Han, Q. R.; Peng, Z. L. Recent advancements of solid-state emissive carbon dots: A review. Coord. Chem. Rev. 2024, 498, 215469.

[24]

Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019, 6, 1900766.

[25]

Ding, H.; Zhou, X. X.; Zhang, Z. H.; Zhao, Y. P.; Wei, J. S.; Xiong, H. M. Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. Nano Res. 2022, 15, 3548–3555.

[26]

Niu, X. Q.; Zheng, W. J.; Song, T. B.; Huang, Z. H.; Yang, C. L.; Zhang, L. M.; Li, W.; Xiong, H. M. Pyrolysis of single carbon sources in SBA-15: A recyclable solid phase synthesis to obtain uniform carbon dots with tunable luminescence. Chin. Chem. Lett. 2023, 34, 107560.

[27]

Xu, J. H.; Liang, Q. J.; Li, Z. J.; Osipov, V. Y.; Lin, Y. J.; Ge, B. H.; Xu, Q.; Zhu, J. F.; Bi, H. Rational synthesis of solid-state ultraviolet B emitting carbon dots via acetic acid-promoted fractions of sp3 bonding strategy. Adv. Mater. 2022, 34, 2200011.

[28]

Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

[29]

Lin, C. J.; Zhuang, Y. X.; Li, W. H.; Zhou, T. L.; Xie, R. J. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 2019, 11, 6584–6590.

[30]

Liu, Y. D.; Yu, Y. K.; Yang, F.; Zhu, G. Q.; Yu, K.; Kou, R. H.; Sun, C. J.; Liu, Y. Z.; Xu, J. Y.; Liu, C. et al. Reversible iron oxyfluoride (FeOF)–graphene composites as sustainable cathodes for high energy density lithium batteries. Small. 2023, 19, 2206947.

[31]

Liu, H. X.; Zhong, X.; Pan, Q.; Zhang, Y.; Deng, W. T.; Zou, G. Q.; Hou, H. S.; Ji, X. B. A review of carbon dots in synthesis strategy. Coord. Chem. Rev. 2024, 498, 215468.

[32]

Li, Y.; Liu, C.; Sun, H.; Chen, M. L.; Hou, D. F.; Zheng, Y. W.; Xie, H. J.; Zhou, B.; Lin, X. Formation and band gap tuning mechanism of multicolor emissive carbon dots from m-hydroxybenzaldehyde. Adv. Sci. 2023, 10, 2300543.

[33]

Song, S. Y.; Liu, K. K.; Mao, X.; Cao, Q.; Li, N.; Zhao, W. B.; Wang, Y.; Liang, Y. C.; Zang, J. H.; Li, X. et al. Colorful triplet excitons in carbon nanodots for time delay lighting. Adv. Mater. 2023, 35, 2212286.

[34]

Wang, B. Y.; Song, H. Q.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Ethanol-derived white emissive carbon dots: The formation process investigation and multi-color/white LEDs preparation. Nano Res. 2022, 15, 942–949.

[35]

Ding, H.; Zhao, R.; Zhang, Z. H.; Yang, J. J.; Wang, Z.; Xiao, L. L.; Li, X. H.; He, X. J.; Xiong, H. M. Kilogram-scale synthesis of carbon dots with high-efficiency full-color solid-state fluorescence using an aggregation-induced emission strategy. Chem. Eng. J. 2023, 476, 146405.

[36]

Xu, W. J.; Han, Q. R.; Ji, C. Y.; Zeng, F. H.; Zhang, X. S.; Deng, J. W.; Shi, C. S.; Peng, Z. L. Solid-state, hectogram-scale preparation of red carbon dots as phosphor for energy-transfer-induced high-quality white LEDs with CRI of 97. Small 2023, 19, 2304123

[37]

Qu, D.; Zheng, M.; Li, J.; Xie, Z. G.; Sun, Z. C. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci. Appl. 2015, 4, e364.

[38]

Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.

[39]

Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

[40]

Niu, X. Q.; Song, T. B.; Xiong, H. M. Large scale synthesis of red emissive carbon dots powder by solid state reaction for fingerprint identification. Chin. Chem. Lett. 2021, 32, 1953–1956.

[41]

Jiang, K.; Gao, X. L.; Feng, X. Y.; Wang, Y. H.; Li, Z. J.; Lin, H. W. Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angew. Chem., Int. Ed. 2020, 59, 1263–1269.

[42]

Li, P. F.; Xue, S. S.; Sun, L.; Zong, X. P.; An, L.; Qu, D.; Wang, X. Y.; Sun, Z. C. Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system. Light Sci. Appl. 2022, 11, 298.

[43]

Sun, H. C.; Xia, P. F.; Shao, H. B.; Zhang, R.; Lu, C. G.; Xu, S. H.; Wang, C. L. Heating-free synthesis of red emissive carbon dots through separated processes of polymerization and carbonization. J. Colloid Interface Sci. 2023, 646, 932–939.

[44]

Lyu, B.; Li, H. J.; Xue, F. F.; Sai, L.; Gui, B. J.; Qian, D. J.; Wang, X. Y.; Yang, J. H. Facile, gram-scale and eco-friendly synthesis of multi-color graphene quantum dots by thermal-driven advanced oxidation process. Chem. Eng. J. 2020, 388, 124285.

[45]

An, Y. L.; Liu, C.; Chen, M.; Yin, X. J.; Hou, D. F.; Zheng, Y. W.; Shi, R.; He, X. H.; Lin, X. Solid-state carbon dots with tunable fluorescence via surface substitution: Effect of alkyl moieties on fluorescence characteristics. ACS Sustain. Chem. Eng. 2023, 11, 23–28.

[46]

Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.

[47]

Long, P.; Feng, Y. Y.; Cao, C.; Li, Y.; Han, J. K.; Li, S. W.; Peng, C.; Li, Z. Y.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 2018, 28, 1800791.

[48]

Chen, S. W.; Ullah, N.; Wang, T. Q.; Zhang, R. Q. Tuning the optical properties of graphene quantum dots by selective oxidation: A theoretical perspective. J. Mater. Chem. C 2018, 6, 6875–6883.

[49]

Wang, P.; Liu, C.; Tang, W. Q.; Ren, S. X.; Chen, Z. J.; Guo, Y. R.; Rostamian, R.; Zhao, S. L.; Li, J.; Liu, S. X. et al. Molecular glue strategy: Large-scale conversion of clustering-induced emission luminogen to carbon dots. ACS Appl. Mater. Interfaces 2019, 11, 19301–19307.

[50]

Han, Q. R.; Xu, W. J.; Ji, C. Y.; Xiong, G. Y.; Shi, C. S.; Zhang, D. M.; Shi, W. Q.; Jiang, Y. X.; Peng, Z. L. Multicolor and single-component white light-emitting carbon dots from a single precursor for light-emitting diodes. ACS Appl. Nano Mater. 2022, 5, 15914–15924.

Nano Research
Pages 8495-8503
Cite this article:
Zheng W-J, Sun Z-N, Wang Y-M, et al. Fluorescent carbon dots synthesized in solid phase and air for application in LEDs. Nano Research, 2024, 17(9): 8495-8503. https://doi.org/10.1007/s12274-024-6787-y
Topics:

271

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 April 2024
Revised: 17 May 2024
Accepted: 26 May 2024
Published: 25 July 2024
© Tsinghua University Press 2024
Return