AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Research progress in performance improvement strategies and sulfur conversion mechanisms of Li-S batteries based on Fe series nanomaterials

Ziyang Huang1Zhenghua Wang1Lei Zhou2,3Jun Pu1( )
Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241000, China
School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven MB 5600, The Netherlands
Show Author Information

Graphical Abstract

The positive effects of Fe-based materials on sulfur conversion are reviewed from the perspectives of vacancy engineering, metal complex engineering, heterostructure engineering, and single-atom/diatomic materials. The action mechanism of each Fe-based catalyst is described from an atomic perspective.

Abstract

Lithium-sulfur (Li-S) batteries hold the potential to revolutionize energy storage due to the high theoretical capacity and energy density. However, the commercialization process is seriously hindered by the rapid capacity decay and low utilization of sulfur, caused by the inevitable slow dynamics and the “shuttle effect”. The incorporation of metal-based electrocatalysts into sulfur cathodes shows promise in promoting the conversion of lithium polysulfides (LiPSs), reducing the “shuttle effect”, and enhancing cell kinetics and cycle life. Among these, Fe-based materials, characterized by environmental friendliness, low cost, abundant reserves, and high activity, are extensively used in sulfur cathode modification. This article reviews the advancements of Fe-based materials in enhancing Li-S batteries in recent years. Starting from single/multi-component Fe-based metal compounds and single/bimetallic atoms, the influence of different Fe coordination environments on the conversion mechanism of LiPSs is analyzed. It is hoped that this review and the proposed prospects can further stimulate the development and application of the Fe element in Li-S batteries in the future.

References

[1]

Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

[2]

Kim, T. H.; Park, J. S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H. K. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2, 860–872.

[3]

Liu, J. Y.; Zheng, Q. Y.; Goodman, M. D.; Zhu, H. Y.; Kim, J.; Krueger, N. A.; Ning, H. L.; Huang, X. J.; Liu, J. H.; Terrones, M. et al. Graphene sandwiched mesostructured Li-ion battery electrodes. Adv. Mater. 2016, 28, 7696–7702.

[4]

Fan, L. L.; Li, M.; Li, X. F.; Xiao, W.; Chen, Z. W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule 2019, 3, 361–386.

[5]

Zhao, C.; Xu, G.-L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y.-X.; Ren, Y. X.; Cheng, L.; Sun, C.-J.; Ren, Y.; et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2020, 16, 166–173.

[6]

Fang, M.; Han, J. W.; He, S. Y.; Ren, J.-C.; Li, S.; Liu, W. Effective screening descriptor for MXenes to enhance sulfur reduction in lithium-sulfur batteries. J. Am. Chem. Soc. 2023, 145, 12601–12608.

[7]

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

[8]

Chung, S. H.; Manthiram, A. Current status and future prospects of metal-sulfur batteries. Adv Mater. 2019, 31, 1901125.

[9]

Hu, A. J.; Zhou, M. J.; Lei, T. Y.; Hu, Y.; Du, X. C.; Gong, C. H.; Shu, C. Z.; Long, J. P.; Zhu, J.; Chen, W. et al. Optimizing redox reactions in aprotic lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2002180.

[10]

Li, G. R.; Lu, F.; Dou, X. Y.; Wang, X.; Luo, D.; Sun, H.; Yu, A. P.; Chen, Z. W. Polysulfide regulation by the zwitterionic barrier toward durable lithium-sulfur batteries. J. Am. Chem. Soc. 2020, 142, 3583–3592.

[11]

Peng, L. L.; Wei, Z. Y.; Wan, C. Z.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H. T.; Allen, C. S.; Xu, X. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770.

[12]

Wang, P.; Xi, B. J.; Huang, M.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Emerging catalysts to promote kinetics of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893.

[13]

Wang, J.; Jia, L. J.; Duan, S. R.; Liu, H. T.; Xiao, Q. B.; Li, T.; Fan, H. Y.; Feng, K.; Yang, J.; Wang, Q. et al. Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode. Energy Storage Mater. 2020, 28, 375–382.

[14]

Cao, G. Q.; Duan, R. X.; Li, X. F. Controllable catalysis behavior for high performance lithium sulfur batteries: From kinetics to strategies. EnergyChem 2023, 5, 100096.

[15]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

[16]

Zheng, M. B.; Chi, Y.; Hu, Q.; Tang, H.; Jiang, X. L.; Zhang, L.; Zhang, S. T.; Pang, H.; Xu, Q. Carbon nanotube-based materials for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 17204–17241.

[17]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

[18]

Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.

[19]

Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.

[20]

Park, G. D.; Jung, D. S.; Lee, J. K.; Kang, Y. C. Pitch-derived yolk–shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li-S batteries. Chem. Eng. J. 2019, 373, 382–392.

[21]

Liu, P. T.; Wang, Y. Y.; Liu, J. H. Biomass-derived porous carbon materials for advanced lithium sulfur batteries. J. Energy Chem. 2019, 34, 171–185.

[22]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[23]

Zhang, F. L.; Ji, S.; Wang, H.; Liang, H. G.; Wang, X. Y.; Wang, R. F. Implanting cobalt atom clusters within nitrogen-doped carbon network as highly stable cathode for lithium-sulfur batteries. Small Methods 2021, 5, 2100066.

[24]

Liu, Z. H.; Mao, X. Q.; Wang, S.; Li, T. T.; Luo, Y. Q.; Xing, J. Y.; Fei, B.; Pan, Z. Y.; Tian, Z. Q.; Kang, P. K. A bifunctional interlayer fabricated by FeS2-embedded N-doped carbon nanocages with efficient polysulfide trapping-catalyzing capability for robust Li-S batteries. Chem. Eng. J. 2022, 447, 137433.

[25]

He, J. R.; Luo, L.; Chen, Y. F.; Manthiram, A. Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1702707.

[26]

Chen, X. D.; Xu, Y. J.; Du, F. H.; Wang, Y. Covalent organic framework derived boron/oxygen codoped porous carbon on CNTs as an efficient sulfur host for lithium-sulfur batteries. Small Methods 2019, 3, 1900338.

[27]

Sun, R.; Peng, L.; Qu, M. X.; Yang, W. W.; Wang, Z. H.; Bai, Y.; Sun, K. N. Sulfur-doped hollow C@CoP nanosphere modified separator for enhancing polysulfides anchoring and conversion in Li-S batteries. J. Power Sources 2023, 580, 233382.

[28]

Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides. ACS Energy Lett. 2017, 2, 795–801.

[29]

Lim, W. G.; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics. Angew. Chem., Int. Ed. 2019, 58, 18746–18757.

[30]

Liu, G. L.; Wang, W. M.; Zeng, P.; Yuan, C.; Wang, L.; Li, H. T.; Zhang, H.; Sun, X. H.; Dai, K. H.; Mao, J. et al. Strengthened d–p orbital hybridization through asymmetric coordination engineering of single-atom catalysts for durable lithium-sulfur batteries. Nano Lett. 2022, 22, 6366–6374.

[31]

Qu, G.; Guo, K.; Dong, J. C.; Huang, H. J.; Yuan, P. F.; Wang, Y. J.; Yuan, H. Y.; Zheng, L. R.; Zhang, J. N. Tuning Fe-spin state of FeN4 structure by axial bonds as efficient catalyst in Li-S batteries. Energy Storage Mater. 2023, 55, 490–497.

[32]

Dong, X. J.; Deng, Q.; Liang, F. X.; Shen, P. K.; Zhu, J. L.; Tang, C. Vanadium-based compounds and heterostructures as functional sulfur catalysts for lithium-sulfur battery cathodes. J. Energy Chem. 2023, 86, 118–134.

[33]

Ouyang, Y.; Zong, W.; Zhu, X. B.; Mo, L. L.; Chao, G. J.; Fan, W.; Lai, F. L.; Miao, Y. E.; Liu, T. X.; Yu, Y. A universal spinning-coordinating strategy to construct continuous metal–nitrogen–carbon heterointerface with boosted lithium polysulfides immobilization for 3D-printed Li-S batteries. Adv. Sci. 2022, 9, 2203181.

[34]

Guo, T.; Ding, Y. C.; Xu, C.; Bai, W. X.; Pan, S. C.; Liu, M. L.; Bi, M.; Sun, J. W.; Ouyang, X. P.; Wang, X. et al. High crystallinity 2D π–d conjugated conductive metal-organic framework for boosting polysulfide conversion in lithium-sulfur batteries. Adv. Sci. 2023, 10, 2302518.

[35]

Pu, J.; Wang, T.; Zhu, X. M.; Tan, Y.; Gao, L. L.; Chen, J. X.; Huang, J. R.; Wang, Z. H. Multifunctional Ni/NiO heterostructure nanoparticles doped carbon nanorods modified separator for enhancing Li-S battery performance. Electrochim. Acta 2022, 435, 141396.

[36]

Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

[37]

Zhou, X.; Huang, X. L.; Li, G.; Zeng, P.; Liu, X. L.; Liu, H.; Chen, M. F.; Wang, X. Y. An advanced SRR catalyst based on hollow polyhedral carbon skeleton modified by tri-metal (Zn, Co, Fe) for Li-S batteries. Chem. Eng. J. 2023, 471, 144806.

[38]

Zheng, C.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Li, J.; Fan, S. X.; Deng, Y. Q.; Pan, Z. Z.; Li, B. H.; Kang, F. Y. et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306–312.

[39]

Li, J.; Xu, Y. L.; He, C.; Zhao, J. P.; Liang, Y. Three-dimensional embroidered ball-like α-Fe2O3 synthesised by a microwave hydrothermal method as a sulfur immobilizer for high-performance Li-S batteries. J. Mater. Chem. C 2022, 10, 7066–7075.

[40]

Na, T. C.; Liu, Y.; Li, X. C.; Zheng, W. J.; Dai, Y.; Yan, Z. J.; Kou, W.; He, G. H. Electrocatalytic polysulfide transformation for suppressing the shuttle effect of Li-S batteries. Appl. Surf. Sci. 2020, 528, 146970.

[41]

Lu, Y.; Qin, J. L.; Shen, T.; Yu, Y. F.; Chen, K.; Hu, Y. Z.; Liang, J. N.; Gong, M. X.; Zhang, J. J.; Wang, D. L. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries. Adv. Energy Mater. 2021, 11, 2101780.

[42]

Xin, S. S.; Li, J.; Cui, H. T.; Liu, Y. Y.; Wei, H. Y.; Zhong, Y. Y.; Wang, M. R. Self-templating synthesis of prismatic-like N-doped carbon tubes embedded with Fe3O4 as a high-efficiency polysulfide-anchoring-conversion mediator for high performance lithium-sulfur batteries. Chem. Eng. J. 2021, 410, 128153.

[43]

Fan, L. S.; Wu, H. X.; Wu, X.; Wang, M. X.; Cheng, J. H.; Zhang, N. Q.; Feng, Y. J.; Sun, K. N. Fe-MOF derived jujube pit like Fe3O4/C composite as sulfur host for lithium-sulfur battery. Electrochim. Acta 2019, 295, 444–451.

[44]

Liu, G. X.; Feng, K.; Cui, H. T.; Li, J.; Liu, Y. Y.; Wang, M. R. MOF derived in- situ carbon-encapsulated Fe3O4@C to mediate polysulfides redox for ultrastable lithium-sulfur batteries. Chem. Eng. J. 2020, 381, 122652.

[45]

Qu, Q. T.; Qian, F.; Yang, S. M.; Gao, T.; Liu, W. J.; Shao, J.; Zheng, H. H. Layer-by-layer polyelectrolyte assisted growth of 2D ultrathin MoS2 nanosheets on various 1D carbons for superior Li-storage. ACS Appl. Mater. Interfaces 2016, 8, 1398–1405.

[46]

Xie, D. J.; Xu, Y. L.; Härk, E.; Kochovski, Z.; Pan, X. F.; Zhang, X.; Schmidt, J.; Lu, Y. Carbon-coated mesoporous Fe3O4 nanospindles with interconnected porosities as polysulfide mediator for lithium-sulfur batteries. Mater. Today Energy 2023, 36, 101344.

[47]

Li, M. H.; Ji, S.; Ma, X. G.; Wang, H.; Wang, X. Y.; Linkov, V.; Wang, R. F. Synergistic effect between monodisperse Fe3O4 nanoparticles and nitrogen-doped carbon nanosheets to promote polysulfide conversion in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 16310–16319.

[48]

Hu, X. R.; Jiang, H. L.; Li, X. C.; Mu, J. W.; He, G. H.; Yu, M. Flexible and conductive membrane with ultrahigh porosity and polysulfide-conversion catalytic activity for large-scale preparation of Li-S batteries. ACS Appl. Energy Mater. 2023, 6, 342–352.

[49]

Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710–12715.

[50]

Li, J. H.; Xiong, Z. S.; Wu, Y. J.; Li, H.; Liu, X. Y.; Peng, H. J.; Zheng, Y. Y.; Zhang, Q.; Liu, Q. B. Iron (Fe, Ni, Co)-based transition metal compounds for lithium-sulfur batteries: Mechanism, progress and prospects. J. Energy Chem. 2022, 73, 513–532.

[51]

Li, J. F.; Niu, Z. H.; Guo, C.; Li, M.; Bao, W. Z. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. J. Energy Chem. 2021, 54, 434–451.

[52]

Li, S. Q.; Wang, K.; Zhang, G. F.; Li, S. N.; Xu, Y. N.; Zhang, X. D.; Zhang, X.; Zheng, S. H.; Sun, X. Z.; Ma, Y. W. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater. 2022, 32, 2200796.

[53]

Gao, Y.; Zheng, F.; Wang, D. J.; Wang, B. Mechanoelectrochemical issues involved in current lithium-ion batteries. Nanoscale 2020, 12, 20100–20117.

[54]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[55]

Zeng, Z. P.; Li, W.; Chen, X. J.; Zhang, N.; Qi, H.; Liu, X. B. Nanosized FeS2 particles caged in the hollow carbon shell as a robust polysulfide adsorbent and redox mediator. ACS Sustain. Chem. Eng. 2020, 8, 3261–3272.

[56]

Sun, W. W.; Liu, S. K.; Li, Y. J.; Wang, D. Q.; Guo, Q. P.; Hon, X. B.; Xie, K.; Ma, Z. Y.; Zheng, C. M.; Xiong, S. Z. Monodispersed FeS2 electrocatalyst anchored to nitrogen-doped carbon host for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2205471.

[57]

Xie, D. J.; Mei, S. L.; Xu, Y. L.; Quan, T.; Härk, E.; Kochovski, Z.; Lu, Y. Efficient sulfur host based on yolk–shell iron oxide/sulfide-carbon nanospindles for lithium-sulfur batteries. ChemSusChem 2021, 14, 1404–1413.

[58]

Dirlam, P. T.; Park, J.; Simmonds, A. G.; Domanik, K.; Arrington, C. B.; Schaefer, J. L.; Oleshko, V. P.; Kleine, T. S.; Char, K.; Glass, R. S. et al. Elemental sulfur and molybdenum disulfide composites for Li-S batteries with long cycle life and high-rate capability. ACS Appl. Mater. Interfaces 2016, 8, 13437–13448.

[59]

Su, Y. S.; Manthiram, A. Sulfur/lithium-insertion compound composite cathodes for Li-S batteries. J. Power Sources 2014, 270, 101–105.

[60]

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

[61]

Sun, K.; Zhao, C. H.; Lin, C. H.; Stavitski, E.; Williams, G. J.; Bai, J. M.; Dooryhee, E.; Attenkofer, K.; Thieme, J.; Chen-Wiegart, Y. C. K. et al. Operando multi-modal synchrotron investigation for structural and chemical evolution of cupric sulfide (CuS) additive in Li-S battery. Sci. Rep. 2017, 7, 12976

[62]

Zou, J.; Zhao, J.; Wang, B. J.; Chen, S. L.; Chen, P. Y.; Ran, Q. W.; Li, L.; Wang, X.; Yao, J. M.; Li, H. et al. Unraveling the reaction mechanism of FeS2 as a Li-ion battery cathode. ACS Appl. Mater. Interfaces 2020, 12, 44850–44857.

[63]

Sun, K.; Cama, C. A.; Demayo, R. A.; Bock, D. C.; Tong, X.; Su, D.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S.; Gan, H. Interaction of FeS2 and sulfur in Li-S battery system. J. Electrochem. Soc. 2017, 164, A6039–A6046.

[64]

Shen, J. D.; Xu, X. J.; Liu, J.; Liu, Z. B.; Li, F. K.; Hu, R. Z.; Liu, J. W.; Hou, X. H.; Feng, Y. Z.; Yu, Y. et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano 2019, 13, 8986–8996.

[65]

Li, T. T.; Liu, K. G.; Wang, S.; Liu, Z. H.; Liao, G. Z.; Chen, Z. Y.; Shen, P. K. Mesoporous hierarchical NiCoSe2-NiO composite self-supported on carbon nanoarrays as synergistic electrocatalyst for flexible lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 629, 114–124.

[66]

Xie, Y. H.; Ao, J.; Zhang, L.; Shao, Y. Q.; Zhang, H.; Cheng, S. Y.; Wang, X. H. Multi-functional bilayer carbon structures with micrometer-level physical encapsulation as a flexible cathode host for high-performance lithium-sulfur batteries. Chem. Eng. J. 2023, 451, 139017.

[67]

Chen, Y. J.; Liu, S. Y.; Yuan, X. T.; Hu, X. C.; Ye, W. Q.; Abdul Razzaq, A.; Lian, Y. B.; Chen, M. Z.; Zhao, X. H.; Peng, Y. et al. rGO-CNT aerogel embedding iron phosphide nanocubes for high-performance Li-polysulfide batteries. Carbon 2020, 167, 446–454.

[68]

Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.

[69]

Pu, J.; Tan, Y.; Wang, Z. H.; Fang, Z.; Xue, P.; Yao, Y. G. Fe3P electrocatalysts assisted carbon based sandwich sulfur cathode “top–bottom” strategy for high rate and high temperature lithium-sulfur batteries. Chem. Eng. J. 2023, 471, 144374.

[70]

Xia, G.; Zhang, L. S.; Ye, J. J.; Fu, Z. H.; Li, X. T.; Yang, X. X.; Zheng, Z. Q.; Chen, C. Z.; Hu, C. Amorphous transformation of FeP enabling enhanced sulfur catalysis and anchoring in high-performance Li-S batteries. Chem. Eng. J. 2022, 431, 133705.

[71]

Jamil, S.; Wang, H.; Fasehullah, M.; Aslam, M. K.; Jabar, B.; Ud Din, M. A.; Zhang, Y.; Sun, W.; Bao, S. J.; Xu, M. W. N doped FeP nanospheres decorated carbon matrix as an efficient electrocatalyst for durable lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 630, 70–80.

[72]

Yuan, H. D.; Chen, X. L.; Zhou, G. M.; Zhang, W. K.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y.; Zhang, J. et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries. ACS Energy Lett. 2017, 2, 1711–1719.

[73]

Zhang, W.; Pan, H.; Han, N.; Feng, S. H.; Zhang, X.; Guo, W.; Tan, P. P.; Xie, S. J.; Zhou, Z. Y.; Ma, Q. R. et al. Balancing adsorption, catalysis, and desorption in cathode catalyst for Li-S batteries. Adv. Energy Mater. 2023, 13, 2301551.

[74]

Li, X. C.; Zhang, Y.; Wang, S. T.; Liu, Y.; Ding, Y.; He, G. H.; Zhang, N.; Yu, G. H. Hierarchically porous C/Fe3C membranes with fast ion-transporting channels and polysulfide-trapping networks for high-areal-capacity Li-S batteries. Nano Lett. 2020, 20, 701–708.

[75]

Weng, W.; Xiao, J. X.; Shen, Y. J.; Liang, X. X.; Lv, T.; Xiao, W. Molten salt electrochemical modulation of iron-carbon-nitrogen for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 24905–24909.

[76]

Yang, X. F.; Gao, X. J.; Sun, Q.; Jand, S. P.; Yu, Y.; Zhao, Y.; Li, X.; Adair, K.; Kuo, L. Y.; Rohrer, J. et al. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 2019, 31, 1901220.

[77]

Lei, T. Y.; Hu, Y.; Chen, W.; Lv, W. Q.; Jiao, Y.; Wang, X. P.; Lv, X. X.; Yan, Y. C.; Huang, J. W.; Chu, J. W. et al. Genetic engineering of porous sulfur species with molecular target prevents host passivation in lithium sulfur batteries. Energy Storage Mater. 2020, 26, 65–72.

[78]

Chu, H.; Noh, H.; Kim, Y. J.; Yuk, S.; Lee, J. H.; Kwack, H.; Kim, Y.; Yang, D. K.; Kim, H. T. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 2019, 10, 188.

[79]

Li, Z. J.; Zhou, Y. C.; Wang, Y.; Lu, Y. C. Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802207.

[80]

Zeng, P.; Yuan, C.; An, J.; Yang, X. F.; Cheng, C.; Yan, T. R.; Liu, G. L.; Chan, T. S.; Kang, J.; Zhang, L. et al. Achieving reversible precipitation-decomposition of reactive Li2S towards high-areal-capacity lithium-sulfur batteries with a wide-temperature range. Energy Storage Mater. 2022, 44, 425–432.

[81]

Jin, Z. S.; Zhao, M.; Lin, T. N.; Wang, Z.; Zhang, Q.; Liu, B. Q.; Li, L.; Chen, L. H.; Zhang, L. Y.; Su, Z. M. et al. Ordered micro-mesoporous carbon spheres embedded with well-dispersed ultrafine Fe3C nanocrystals as cathode material for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 388, 124315.

[82]

Zhou, C. Y.; Li, X. C.; Jiang, H. L.; Ding, Y.; He, G. H.; Guo, J.; Chu, Z.; Yu, G. H. Pulverizing Fe2O3 nanoparticles for developing Fe3C/N-codoped carbon nanoboxes with multiple polysulfide anchoring and converting activity in Li-S batteries. Adv. Funct. Mater. 2021, 31, 2011249.

[83]

Dong, Q.; Zhang, F. L.; Ji, S.; Wang, X. Y.; Wang, H.; Linkov, V.; Wang, R. F. Fe3C-inserted “tube plugging into porous network” nanohybrids as advanced sulfur hosts for lithium-sulfur batteries. J. Alloys Compd. 2021, 877, 160286.

[84]

Li, H. X.; Ma, S.; Cai, H. Q.; Zhou, H. H.; Huang, Z. Y.; Hou, Z. H.; Wu, J. J.; Yang, W. J.; Yi, H. B.; Fu, C. P. et al. Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2019, 18, 338–348.

[85]

Lei, W. X.; Wang, X. R.; Zhang, Y. W.; Luo, Z. Y.; Xia, P.; Zou, Y. L.; Ma, Z. S.; Pan, Y.; Lin, S. Facile synthesis of Fe3C nano-particles/porous biochar cathode materials for lithium sulfur battery. J. Alloys Compd. 2021, 853, 157024.

[86]

Wang, X. R.; Zhang, T. Y.; Chang, Q. H.; Wu, Y. Q.; Lei, W. X.; Zou, Y. L.; Ma, Z. S.; Pan, Y. Porous biochar nanosheets loaded with Fe3C particles accelerate electrochemical reactions and their applications in Li-S batteries. Sustain. Energy Fuels 2021, 5, 4346–4354.

[87]

Wu, S. Y.; Ke, Y.; Tang, J.; Lei, X. Q.; Deng, H.; Lin, Z. Upcycling of electroplating sludge into Fe3C-decorated N,P dual-doped porous carbon via microalgae as efficient sulfur host for lithium-sulfur batteries. Surf. Interfaces 2022, 30, 101869.

[88]

Zhao, T. K.; Chen, J. W.; Dai, K. Q.; Zhang, J. X.; Yuan, M. L.; Li, X. Q.; Zhang, K.; Zhang, J. T.; Li, Y. L.; Liu, Z. J. et al. Boosted polysulfides regulation by iron carbide nanoparticles-embedded porous biomass-derived carbon toward superior lithium-sulfur batteries. J. Colloid Interface Sci. 2022, 605, 129–137.

[89]

Wang, Y. C.; Wei, Y. H.; Wang, B. Y.; Jing, P.; Zhang, Y.; Zhang, Y.; Wang, Q.; Wu, H. Bio-assisted engineering of hierarchical porous carbon nanofiber host in- situ embedded with iron carbide nanocatalysts toward high-performance Li-S batteries. Carbon 2021, 177, 60–70.

[90]

Zhang, C. Q.; Biendicho, J. J.; Zhang, T.; Du, R. F.; Li, J. S.; Yang, X. H.; Arbiol, J.; Zhou, Y. T.; Morante, J. R.; Cabot, A. Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903842.

[91]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 2021, 33, 2101204.

[92]

Zheng, H. R.; Wang, S. B.; Liu, S. J.; Wu, J.; Guan, J. P.; Li, Q.; Wang, Y. C.; Tao, Y.; Hu, S. Y.; Bai, Y. et al. The heterointerface between Fe1/NC and selenides boosts reversible oxygen electrocatalysis. Adv. Funct. Mater. 2023, 33, 2300815.

[93]

Li, J. Y.; Niu, X. L.; Zeng, P.; Chen, M. F.; Pei, Y.; Li, L. Y.; Luo, Z. G.; Wang, X. Y. Double bond effects induced by iron selenide as immobilized homogenous catalyst for efficient polysulfides capture. Chem. Eng. J. 2021, 421, 129770.

[94]

Sun, W. W.; Li, Y. J.; Liu, S. K.; Liu, C.; Tan, X. J.; Xie, K. Mechanism investigation of iron selenide as polysulfide mediator for long-life lithium-sulfur batteries. Chem. Eng. J. 2021, 416, 129166.

[95]

Pu, J.; Tan, Y.; Wang, T.; Zhu, X. M.; Fan, S. S. Ultrathin two-dimensional Fe-Co bimetallic oxide nanosheets for separator modification of lithium-sulfur batteries. Molecules 2022, 27, 7762.

[96]

Muralidharan, N.; Nallathamby, K. In- situ formed polar Fe2N/MCMB hybrid interlayer for high-rate Li-S batteries. Energy Fuels 2021, 35, 17930–17939.

[97]

Wang, X.; Wang, D. S.; Ma, C. H.; Yang, Z. Z.; Yue, H. J.; Zhang, D.; Sun, Z. H. Conductive Fe2N/N-rGO composite boosts electrochemical redox reactions in wide temperature accommodating lithium-sulfur batteries. Chem. Eng. J. 2022, 427, 131622.

[98]

Sun, W. W.; Liu, C.; Li, Y. J.; Luo, S. Q.; Liu, S. K.; Hong, X. B.; Xie, K.; Liu, Y. M.; Tan, X. J.; Zheng, C. M. Rational construction of Fe2N@C yolk–shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries. ACS Nano 2019, 13, 12137–12147.

[99]

Sun, X.; Tian, D.; Song, X. Q.; Jiang, B.; Zhao, C. H.; Zhang, Y.; Yang, L.; Fan, L. S.; Yin, X. J.; Zhang, N. Q. In situ conversion to construct fast ion transport and high catalytic cathode for high-sulfur loading with lean electrolyte lithium-sulfur battery. Nano Energy 2022, 95, 106979

[100]

Shen, G. H.; Liu, Z. X.; Liu, P.; Duan, J. F.; Younus, H. A.; Deng, H. Q.; Wang, X. W.; Zhang, S. G. Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1154–1163.

[101]

Dai, C. L.; Hu, L. Y.; Wang, M. Q.; Chen, Y. M.; Han, J.; Jiang, J.; Zhang, Y.; Shen, B. L.; Niu, Y. B.; Bao, S. J. et al. Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries. Energy Storage Mater. 2017, 8, 202–208.

[102]

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

[103]

Al-Tahan, M. A.; Dong, Y. T.; Zhang, R.; Zhang, Y. Y.; Zhang, J. M. Understanding the high-performance Fe(OH)3@GO nanoarchitecture as effective sulfur hosts for the high capacity of lithium-sulfur batteries. Appl. Surf. Sci. 2021, 538, 148032.

[104]

Zhang, D.; Duan, T. F.; Luo, Y. X.; Liu, S. S.; Zhang, W. Q.; He, Y. Q.; Zhu, K.; Huang, L.; Yang, Y.; Yu, R. Z. et al. Oxygen defect-rich WO3− x -W3N4 Mott–Schottky heterojunctions enabling bidirectional catalysis for sulfur cathode. Adv. Funct. Mater. 2023, 33, 2306578.

[105]

Shen, Z. H.; Zhang, Z. L.; Li, M.; Yuan, Y. F.; Zhao, Y.; Zhang, S.; Zhong, C. L.; Zhu, J.; Lu, J.; Zhang, H. G. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 2020, 14, 6673–6682.

[106]

Gao, P.; Chen, Z.; Gong, Y. X.; Zhang, R.; Liu, H.; Tang, P.; Chen, X. H.; Passerini, S.; Liu, J. L. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: Synthesis, advanced characterization, and fundamentals. Adv. Energy Mater. 2020, 10, 1903780.

[107]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[108]

Zeng, P.; Yuan, C.; Liu, G. L.; Gao, J. C.; Li, Y. G.; Zhang, L. Recent progress in electronic modulation of electrocatalysts for high-efficient polysulfide conversion of Li-S batteries. Chin. J. Catal. 2022, 43, 2946–2965.

[109]

Lv, K. Z.; Wang, P. F.; Wang, C.; Shen, Z. H.; Lu, Z. D.; Zhang, H. G.; Zheng, M. B.; He, P.; Zhou, H. S. Oxygen-deficient ferric oxide as an electrochemical cathode catalyst for high-energy lithium-sulfur batteries. Small 2020, 16, 2000870.

[110]

Pu, J.; Huang, Z. Y.; Wang, J.; Tan, Y.; Fan, S. S.; Wang, Z. H. Core–shell oxygen-deficient Fe2O3 polyhedron serves as an efficient host for sulfur cathode. Chem. Commun. 2024, 60, 180–183.

[111]

Lu, J. H.; Wang, Z. L.; Guo, Y.; Jin, Z. Q.; Cao, G. P.; Qiu, J. Y.; Lian, F.; Wang, A. B.; Wang, W. K. Ultrathin nanosheets of FeOOH with oxygen vacancies as efficient polysulfide electrocatalyst for advanced lithium-sulfur batteries. Energy Storage Mater. 2022, 47, 561–568.

[112]

Tong, Z. M.; Huang, L.; Guo, J. Y.; Zhang, H. J.; Jia, Q. L.; Li, G. R.; Lei, W.; Shao, H. Y.; Zhang, S. W. A spatially efficient “tube-in-tube” hybrid for durable sulfur electrochemistry. J. Mater. Chem. A 2022, 10, 5460–5469.

[113]

Zhang, Y. G.; Li, G. R.; Wang, J. Y.; Cui, G. L.; Wei, X. L.; Shui, L. L.; Kempa, K.; Zhou, G. F.; Wang, X.; Chen, Z. W. Hierarchical defective Fe3− x C@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2001165.

[114]

Li, R. R.; Sun, H.; Chang, C. Y.; Yao, Y.; Pu, X.; Mai, W. J. In situ induced cation-vacancies in metal sulfides as dynamic electrocatalyst accelerating polysulfides conversion for Li-S battery. J. Energy Chem. 2022, 75, 74–82.

[115]

Xi, K.; He, D. Q.; Harris, C.; Wang, Y. K.; Lai, C.; Li, H. L.; Coxon, P. R.; Ding, S. J.; Wang, C.; Kumar, R. V. Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv. Sci. 2019, 6, 1800815.

[116]

Nie, Z. T.; Xu, K.; Lu, Y. F.; Zhang, H. J.; Liu, H. D.; Xu, F.; Yan, Y. B.; Xu, J. S.; Zhu, J. X. Stepped porous carbon-multilayer graphene@Fe3C/Fe3N membrane to inhibit the polysulfides shuttle for high-performance lithium-sulfur batteries. Adv. Sustain. Syst. 2022, 6, 2200086.

[117]

Qiao, Z. S.; Zhang, Y. G.; Meng, Z. H.; Xie, Q. S.; Lin, L.; Zheng, H. F.; Sa, B. S.; Lin, J.; Wang, L. S.; Peng, D. L. Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100970.

[118]

Gao, Z.; Schwab, Y.; Zhang, Y. Y.; Song, N. N.; Li, X. D. Ferromagnetic nanoparticle-assisted polysulfide trapping for enhanced lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1800563.

[119]

Chen, R. X.; Zhou, Y. C.; Li, X. D. Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium-sulfur batteries. Nano Lett. 2022, 22, 1217–1224.

[120]

Liu, J. Y.; Zhu, L. Y.; Shen, Z. H.; Zhang, M.; Han, T. L.; Zhang, H. G. Novel doughnutlike graphene quantum dot-decorated composites for high-performance Li-S batteries displaying dual immobilization toward polysulfides. ACS Appl. Energy Mater. 2021, 4, 10998–11003.

[121]

Liu, H. D.; Chen, Z. L.; Zhou, L.; Pei, K.; Xu, P. D.; Xin, L. S.; Zeng, Q. W.; Zhang, J.; Wu, R. B.; Fang, F. et al. Interfacial charge field in hierarchical yolk–shell nanocapsule enables efficient immobilization and catalysis of polysulfides conversion. Adv. Energy Mater. 2019, 9, 1901667.

[122]

Li, M. H.; Wang, H.; Wang, X. Y.; Ma, X. G.; Ren, J. W.; Wang, R. F. FeCo/Fe3C-cross-linked N-doped carbon via synergistic confinement and efficient catalyst to enable high-performance Li-S batteries. J. Colloid Interface Sci. 2022, 628, 54–63.

[123]

Chen, Z. H.; Liao, A.; Guo, Z. Z.; Yu, F.; Mei, T.; Zhang, Z. X.; Irshad, M. S.; Liu, C. C.; Yu, L.; Wang, X. B. A controllable flower-like FeMoO4/FeS2/Mo2S3 composite as efficient sulfur host for lithium-sulfur batteries. Electrochim. Acta 2020, 353, 136561.

[124]

Zhang, H.; Gao, Q. M.; Li, Z. Y.; Xu, P.; Xiao, H.; Zhang, T. F.; Liang, X. A rGO-based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li-S battery. Electrochim. Acta 2020, 343, 136079.

[125]

Sun, L. S.; Bao, X. L.; Li, Y. M.; Zhao, J. X.; Chen, P.; Liu, H.; Wang, X. W.; Liu, W. Q. CoS2 and FeS2 nanoparticles embedded in carbon polyhedrons for lithium-sulfur batteries. ACS Appl. Nano Mater. 2023, 6, 11095–11103.

[126]

Zhu, T. Y.; Sha, Y.; Zhang, H. W.; Huang, Y. C.; Gao, X. H.; Ling, M.; Lin, Z. Embedding Fe3C and Fe3N on a nitrogen-doped carbon nanotube as a catalytic and anchoring center for a high-areal-capacity Li-S battery. ACS Appl. Mater. Interfaces 2021, 13, 20153–20161.

[127]

Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Fan, Z. D.; Jin, J.; Wang, M. L.; Sun, J. Y. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries. Adv. Funct. Mater. 2021, 31, 2006798.

[128]

Gao, N.; Li, B.; Zhang, Y. J.; Li, W. B.; Li, X.; Zhao, J.; Yue, W. C.; Xing, Z. Y.; Wang, B. CoFe alloy-decorated interlayer with a synergistic catalytic effect improves the electrochemical kinetics of polysulfide conversion. ACS Appl. Mater. Interfaces 2021, 13, 57193–57203.

[129]

Chen, P.; Wang, T. Y.; He, D.; Shi, T.; Chen, M. F.; Fang, K.; Lin, H. Z.; Wang, J.; Wang, C. Y.; Pang, H. Delocalized isoelectronic heterostructured FeCoO x S y catalysts with tunable electron density for accelerated sulfur redox kinetics in Li-S batteries. Angew. Chem., Int. Ed. 2023, 62, e202311693.

[130]

Kim, J.; Kim, S. J.; Jung, E.; Mok, D. H.; Paidi, V. K.; Lee, J.; Lee, H. S.; Jeoun, Y.; Ko, W.; Shin, H. et al. Atomic structure modification of Fe-N-C catalysts via morphology engineering of graphene for enhanced conversion kinetics of lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2110857.

[131]

He, D. D.; He, G. H.; Jiang, H. Q.; Chen, Z. K.; Huang, M. H. Enhanced durability and activity of the perovskite electrocatalyst Pr0.5Ba0.5CoO3− δ by Ca doping for the oxygen evolution reaction at room temperature. Chem. Commun. 2017, 53, 5132–5135.

[132]

Wang, W.; Wang, X. Y.; Shan, J. W.; Yue, L. G.; Shao, Z. H.; Chen, L.; Lu, D. Z.; Li, Y. Y. Atomic-level design rules of metal-cation-doped catalysts: Manipulating electron affinity/ionic radius of doped cations for accelerating sulfur redox kinetics in Li-S batteries. Energy Environ. Sci. 2023, 16, 2669–2683.

[133]

Shen, Z. H.; Jin, X.; Tian, J. M.; Li, M.; Yuan, Y. F.; Zhang, S.; Fang, S. S.; Fan, X.; Xu, W. G.; Lu, H. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nat. Catal. 2022, 5, 555–563.

[134]

Deng, D. R.; Li, C.; Weng, J. C.; Fan, X. H.; Chen, Z. J.; Yang, G.; Li, Y.; Wu, Q. H.; Zheng, M. S.; Dong, Q. F. Thin nano cages with limited hollow space for ultrahigh sulfur loading lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 45414–45422.

[135]

Li, Y. Y.; Wu, H. W.; Wu, D. H.; Wei, H. R.; Guo, Y. B.; Chen, H. Y.; Li, Z. J.; Wang, L.; Xiong, C. Y.; Meng, Q. J. et al. High-density oxygen doping of conductive metal sulfides for better polysulfide trapping and Li2S-S8 redox kinetics in high areal capacity lithium-sulfur batteries. Adv. Sci. 2022, 9, 2200840.

[136]

Shen, Z. H.; Cao, M. Q.; Zhang, Z. L.; Pu, J.; Zhong, C. L.; Li, J. C.; Ma, H. X.; Li, F. J.; Zhu, J.; Pan, F. et al. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 2020, 30, 1906661.

[137]

Zhao, M.; Peng, H. J.; Zhang, Z. W.; Li, B. Q.; Chen, X.; Xie, J.; Chen, X.; Wei, J. Y.; Zhang, Q.; Huang, J. Q. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem., Int. Ed. 2019, 58, 3779–3783.

[138]

Wang, S. M.; Li, H. N.; Zhao, G. F.; Xu, L. F.; Liu, D. L.; Sun, Y. J.; Guo, H. Ni3FeN anchored on porous carbon as electrocatalyst for advanced Li-S batteries. Rare Met. 2023, 42, 515–524.

[139]

Zhou, J. H.; Li, S. J.; Sun, W.; Ji, X. B.; Yang, Y. Natural chalcopyrite as a sulfur source and its electrochemical performance for lithium-sulfur batteries. Inorg. Chem. Front. 2019, 6, 1217–1227.

[140]

Huang, Y. Z.; Lin, L.; Zhang, Y. G.; Liu, L.; Sa, B. S.; Lin, J.; Wang, L. S.; Peng, D. L.; Xie, Q. S. Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li-S full batteries. Nano-Micro Lett. 2023, 15, 67.

[141]

Li, H.; Chuai, M. Y.; Xiao, X.; Jia, Y. Y.; Chen, B.; Li, C.; Piao, Z. H.; Lao, Z. J.; Zhang, M. T.; Gao, R. H. et al. Regulating the spin state configuration in bimetallic phosphorus trisulfides for promoting sulfur redox kinetics. J. Am. Chem. Soc. 2023, 145, 22516–22526.

[142]

Pu, J.; Tan, Y.; Wang, T.; Gong, W. B.; Gu, C. P.; Xue, P.; Wang, Z. H.; Yao, Y. G. Efficient catalysis of ultrathin two-dimensional Fe2O3-CoP heterostructure nanosheets for polysulfide redox reactions. Small 2024, 20, 2304847.

[143]

Zhang, H.; Ono, L. K.; Tong, G. Q.; Liu, Y. Q.; Qi, Y. B. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge. Nat. Commun. 2021, 12, 4738.

[144]

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

[145]

Pu, J.; Gong, W. B.; Shen, Z. X.; Wang, L. T.; Yao, Y. G.; Hong, G. CoNiO2/Co4N heterostructure nanowires assisted polysulfide reaction kinetics for improved lithium-sulfur batteries. Adv. Sci. 2022, 9, 2104375.

[146]

Pu, J.; Wang, Z. H.; Xue, P.; Zhu, K. P.; Li, J. C.; Yao, Y. G. The effect of NiO-Ni3N interfaces in in- situ formed heterostructure ultrafine nanoparticles on enhanced polysulfide regulation in lithium-sulfur batteries. J. Energy Chem. 2022, 68, 762–770.

[147]

Wang, T.; He, J. R.; Zhu, Z.; Cheng, X. B.; Zhu, J.; Lu, B. G.; Wu, Y. P. Heterostructures regulating lithium polysulfides for advanced lithium-sulfur batteries. Adv. Mater. 2023, 35, 2303520.

[148]

Pu, J.; Wang, T.; Tan, Y.; Fan, S. S.; Xue, P. Effect of heterostructure-modified separator in lithium-sulfur batteries. Small 2023, 19, 2303266.

[149]

Li, X.; Shao, C. L.; Wang, X. L.; Wang, J. J.; Liu, G. X.; Yu, W. S.; Dong, X. T.; Wang, J. X. Preparation of Fe3O4/Fe x S y heterostructures via electrochemical deposition method and their enhanced electrochemical performance for lithium-sulfur batteries. Chem. Eng. J. 2022, 446, 137267.

[150]

Li, J. H.; Wang, Z. Y.; Shi, K. X.; Wu, Y. J.; Huang, W. Z.; Min, Y. G.; Liu, Q. B.; Liang, Z. X. Nanoreactors encapsulating built-in electric field as a “bridge” for Li-S batteries: Directional migration and rapid conversion of polysulfides. Adv. Energy Mater. 2024, 14, 2303546.

[151]

Zhou, X. Y.; Cui, Y. C.; Huang, X.; Zhang, Q. Y.; Wang, B.; Tang, S. C. Interface engineering of Fe3Se4/FeSe heterostructures encapsulated in MXene for boosting LiPS conversion and inhibiting shuttle effect. Chem. Eng. J. 2023, 457, 141139.

[152]

Liang, Z. W.; Peng, C.; Shen, J. D.; Yuan, J. J.; Yang, Y.; Xue, D. F.; Zhu, M.; Liu, J. Spontaneous built-in electric field in C3N4-CoSe2 modified multifunctional separator with accelerating sulfur evolution kinetics and Li deposition for lithium-sulfur batteries. Small 2024, 20, 2309717.

[153]

Zhang, C. Q.; Du, R. F.; Biendicho, J. J.; Yi, M. J.; Xiao, K.; Yang, D. W.; Zhang, T.; Wang, X.; Arbiol, J.; Llorca, J. et al. Tubular CoFeP@CN as a Mott–Schottky catalyst with multiple adsorption sites for robust lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2100432.

[154]

Zhang, D.; Luo, Y. X.; Liu, J. X.; Dong, Y.; Xiang, C.; Zhao, C. K.; Shu, H. B.; Hou, J. H.; Wang, X. Y.; Chen, M. F. ZnFe2O4-Ni5P4 Mott–Schottky heterojunctions to promote kinetics for advanced Li-S batteries. ACS Appl. Mater. Interfaces 2022, 14, 23546–23557.

[155]

Li, Y. C.; Yan, X. J.; Zhou, Z. F.; Liu, J.; Zhang, Z. H.; Guo, X. S.; Peng, H. R.; Li, G. C. Synergistic coupling between Fe7S8-MoS2 heterostructure and few layers MoS2-embeded N-/P-doping carbon nanocapsule enables superior Li-S battery performances. Appl. Surf. Sci. 2022, 574, 151586.

[156]

Li, W. D.; Gong, Z. J.; Yan, X. J.; Wang, D. Z.; Liu, J.; Guo, X. S.; Zhang, Z. H.; Li, G. C. In situ engineered ZnS-FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 433–442.

[157]
Ma, S.; Ruan, Q. L.; Liu, X. C.; Zhu, G. J.; Yuan, D.; Hu, L. Q.; Huang, Y. M.; Gu, X. X. Insight into lithium-sulfur batteries performance enhancement: From metal nanoparticles to metal nanoclusters to single metal atoms. Tungsten, in press, DOI: 10.1007/s42864-023-00248-8.
[158]

Yuan, N.; Deng, Y. R.; Wang, S. H.; Gao, L.; Yang, J. L.; Zou, N. C.; Liu, B. X.; Zhang, J. Q.; Liu, R. P.; Zhang, L. Towards superior lithium-sulfur batteries with metal-organic frameworks and their derivatives. Tungsten 2022, 4, 269–283.

[159]

Hu, S. Y.; Wang, T. S.; Lu, B. B.; Wu, D.; Wang, H.; Liu, X. L.; Zhang, J. H. Ionic-liquid-assisted synthesis of FeSe-MnSe heterointerfaces with abundant se vacancies embedded in N,B co-doped hollow carbon microspheres for accelerating the sulfur reduction reaction. Adv. Mater. 2022, 34, 2204147.

[160]

Fan, J. X.; Wang, Z. C.; Wang, J.; Tian, Y.; Wang, C. A Two-in-one host for High-loading cathode and dendrite-free anode realized by activating metallic nitrides heterostructures toward Li-S full batteries. Chem. Eng. J. 2023, 460, 141862.

[161]

Nguyen, T. T.; Balamurugan, J.; Go, H. W.; Ngo, Q. P.; Kim, N. H.; Lee, J. H. Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li-S batteries. Chem. Eng. J. 2022, 427, 131774.

[162]

Liu, S. Y.; Zhou, Y. H.; Zhang, Y. B.; Xia, S. J.; Li, Y.; Zhou, X.; Qiu, B.; Shao, G. J.; Liu, Z. P. Surface yttrium-doping induced by element segregation to suppress oxygen release in Li-rich layered oxide cathodes. Tungsten 2022, 4, 336–345.

[163]

Wang, W. J.; Zhao, Y.; Zhang, Y. G.; Wang, J. Y.; Cui, G. L.; Li, M. J.; Bakenov, Z.; Wang, X. Defect-rich multishelled Fe-doped Co3O4 hollow microspheres with multiple spatial confinements to facilitate catalytic conversion of polysulfides for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2020, 12, 12763–12773.

[164]

Shi, L. W.; Fang, H. L.; Yang, X. X.; Xue, J.; Li, C. F.; Hou, S. F.; Hu, C. Fe-cation doping in NiSe2 as an effective method of electronic structure modulation towards high-performance lithium-sulfur batteries. ChemSusChem 2021, 14, 1710–1719.

[165]

Pang, Y. S.; Xie, M. S.; Lu, X. H.; Wan, Z.; Zhong, Z. H.; Muhammad, W.; Huan, X. L.; Niu, Y. H.; Zhang, Z.; Lv, W. Q. Electronic metal-support interactions in atomically dispersed Fe(III)-VO2 nanoribbons for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2308849.

[166]

Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.

[167]

Xue, Z. H.; Luan, D. Y.; Zhang, H. B.; Lou, X. W. Single-atom catalysts for photocatalytic energy conversion. Joule 2022, 6, 92–133.

[168]

Yang, Y. C.; Yang, Y. W.; Pei, Z. X.; Wu, K. H.; Tan, C. H.; Wang, H. Z.; Wei, L.; Mahmood, A.; Yan, C.; Dong, J. C. et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020, 3, 1442–1476.

[169]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[170]

Zhou, T.; Liang, J. N.; Ye, S. H.; Zhang, Q. L.; Liu, J. H. Fundamental, application and opportunities of single atom catalysts for Li-S batteries. Energy Storage Mater. 2023, 55, 322–355.

[171]

Wang, J.; Zhang, J.; Wu, J.; Huang, M.; Jia, L. J.; Li, L. G.; Zhang, Y. Z.; Hu, H. F.; Liu, F. Q.; Guan, Q. H. et al. Interfacial “single-atom-in-defects” catalysts accelerating Li+ desolvation kinetics for long-lifespan lithium-metal batteries. Adv. Mater. 2023, 35, 2302828.

[172]

Wang, F. F.; Li, J.; Zhao, J.; Yang, Y. X.; Su, C. L.; Zhong, Y. L.; Yang, Q. H.; Lu, J. Single-atom electrocatalysts for lithium sulfur batteries: Progress, opportunities, and challenges. ACS Mater. Lett. 2020, 2, 1450–1463.

[173]

Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 2019, 18, 246–252.

[174]

Wang, J.; Zhang, J.; Cheng, S.; Yang, J.; Xi, Y. L.; Hou, X. G.; Xiao, Q. B.; Lin, H. Z. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021, 21, 3245–3253.

[175]

Ren, L. T.; Liu, J.; Zhao, Y. J.; Wang, Y.; Lu, X. W.; Zhou, M. Y.; Zhang, G. X.; Liu, W.; Xu. H. J.; Sun, X. M. Regulating electronic structure of Fe-N4 single atomic catalyst via neighboring sulfur doping for high performance lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2210509.

[176]

Guo, J.; Jiang, H. L.; Wang, K. D.; Yu, M.; Jiang, X. B.; He, G. H.; Li, X. C. Enhancing electron conductivity and electron density of single atom based core–shell nanoboxes for high redox activity in lithium sulfur batteries. Small 2023, 19, 2301849.

[177]

Li, Y. X.; Zeng, Y. X.; Chen, Y.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Mesoporous N-rich carbon with single-Ni atoms as a multifunctional sulfur host for Li-S batteries. Angew. Chem., Int. Ed. 2022, 61, e202212680.

[178]

Lin, X. Y.; Li, W. Y.; Nguyen, V.; Wang, S.; Yang, S. Z.; Ma, L.; Du, Y. H.; Wang, B.; Fan, Z. Y. Fe-single-atom catalyst nanocages linked by bacterial cellulose-derived carbon nanofiber aerogel for Li-S batteries. Chem. Eng. J. 2023, 477, 146977.

[179]

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S,N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

[180]

Yang, L. B.; Wang, X. W.; Cheng, X. M.; Zhang, Y. Z.; Ma, C.; Zhang, Y. Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C. Regulating Fe aggregation state via unique Fe–N–V pre-coordination to optimize the adsorption-catalysis effect in high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2303705.

[181]

Cao, G. Q.; Li, X. F.; Duan, R. X.; Xu, K. H.; Zhang, K.; Chen, L. P.; Jiang, Q. T.; Li, J.; Wang, J. J.; Li, M. et al. Redistribution of d-orbital in Fe-N4 active sites optimizing redox kinetics of the sulfur cathode. Nano Energy 2023, 116, 108755.

[182]

Lim, W. G.; Park, C. Y.; Jung, H.; Kim, S.; Kang, S. H.; Lee, Y. G.; Jeong, Y. C.; Yang, S. B.; Sohn, K.; Han, J. W. et al. Cooperative electronic structure modulator of fe single-atom electrocatalyst for high energy and long cycle Li-S pouch cell. Adv. Mater. 2023, 35, 2208999.

[183]

Jung, E.; Kim, S. J.; Kim, J.; Koo, S.; Lee, J.; Kim, S. Y.; Paidi, V. K.; Ko, W.; Moon, J.; Lee, K. S. et al. Oxygen-plasma-treated Fe–N–C catalysts with dual binding sites for enhanced electrocatalytic polysulfide conversion in lithium-sulfur batteries. ACS Energy Lett. 2022, 7, 2646–2653.

[184]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[185]

Xiao, H.; Li, K.; Zhang, T. F.; Liang, X.; Zhang, F. C.; Zhuang, H. F.; Zheng, L. R.; Gao, Q. M. High loading atomically distributed Fe asymmetrically coordinated with pyridinic and pyrrolic N on porous N-rich carbon matrix driving high performance of Li-S battery. Chem. Eng. J. 2023, 471, 144553.

[186]

Zhang, Y. G.; Liu, J. B.; Wang, J. Y.; Zhao, Y.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 26622–26629.

[187]

Ding, Y. F.; Cheng, Q. S.; Wu, J. H.; Yan, T. R.; Shi, Z. X.; Wang, M. L.; Yang, D. Z.; Wang, P.; Zhang, L.; Sun, J. Y. Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe-N2 mediator promises durable Li-S batteries. Adv. Mater. 2022, 34, 2202256.

[188]

Wang, J. Y.; Qiu, W. B.; Li, G. R.; Liu, J. B.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X. et al. Coordinatively deficient single-atom Fe-N-C electrocatalyst with optimized electronic structure for high-performance lithium-sulfur batteries. Energy Storage Mater. 2022, 46, 269–277.

[189]

Guo, Y. Y.; Yuan, P. F.; Zhang, J. A.; Hu, Y. F.; Amiinu, I. S.; Wang, X.; Zhou, J. G.; Xia, H. C.; Song, Z. B.; Xu, Q. et al. Carbon nanosheets containing discrete Co-N x -B y -C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 2018, 12, 1894–1901.

[190]

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

[191]

Zhao, H.; Tian, B. B.; Su, C. L.; Li, Y. Single-atom iron and doped sulfur improve the catalysis of polysulfide conversion for obtaining high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 7171–7177.

[192]

Huang, T.; Sun, Y. J.; Wu, J. H.; Shi, Z. X.; Ding, Y. F.; Wang, M. L.; Su, C. L.; Li, Y. Y.; Sun, J. Y. Altering local chemistry of single-atom coordination boosts bidirectional polysulfide conversion of Li-S batteries. Adv. Funct. Mater. 2022, 32, 2203902.

[193]

Li, S.; Lin, J. D.; Chang, B.; Yang, D. W.; Wu, D. Y.; Wang, J. H.; Zhou, W. J.; Liu, H.; Sun, S. H.; Zhang, L. Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Mater. 2023, 55, 94–104.

[194]

Fu, J. H.; Dong, J. H.; Si, R.; Sun, K. J.; Zhang, J. Y.; Li, M. R.; Yu, N. N.; Zhang, B. S.; Humphrey, M. G.; Fu, Q. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021, 11, 1952–1961.

[195]

Wu, H. Y.; Gao, X. J.; Chen, X. Y.; Li, W. H.; Li, J. J.; Zhang, L.; Zhao, Y.; Jiang, M.; Sun, R. C.; Sun, X. L. Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries. Carbon Energy 2024, 6, e422.

[196]

Zhang, T. F.; Luo, D. F.; Xiao, H.; Liang, X.; Zhang, F. C.; Zhuang, H. F.; Xu, M. Y.; Dai, W. J.; Qi, S. H.; Zheng, L. R. et al. Nonmetallic-bonding Fe-Mn diatomic pairs anchored on hollow carbonaceous nanodisks for high-performance Li-S battery. Small 2024, 20, 2306806.

[197]

Xu, M. H.; Wang, Y. H.; He, W. H.; Li, X. D.; Meng, X. H.; Li, C. C.; Li, X. T.; Kong, Q. H.; Shen, L. F.; Zhang, J. et al. A N-rich porous carbon nanocube anchored with Co/Fe dual atoms: An efficient bifunctional catalytic host for Li-S batteries. Mater. Chem. Front. 2022, 6, 2095–2102.

[198]

Yang, J. L.; Yang, P. H.; Cai, D. Q.; Wang, Z.; Fan, H. J. Atomically dispersed Fe-N4 and Ni-N4 independent sites enable bidirectional sulfur redox electrocatalysis. Nano Lett. 2023, 23, 4000–4007.

[199]

Liu, X.; He, Q.; Liu, J. S.; Yu, R. H.; Zhang, Y. Y.; Zhao, Y.; Xu, X.; Mai, L. Q.; Zhou, L. Dual single-atom moieties anchored on N-doped multilayer graphene as a catalytic host for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2023, 15, 9439–9446.

[200]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[201]

Wang, X. K.; Xu, L. L.; Li, C.; Zhang, C. H.; Yao, H. X.; Xu, R.; Cui, P. X.; Zheng, X. S.; Gu, M.; Lee, J. et al. Developing a class of dual atom materials for multifunctional catalytic reactions. Nat. Commun. 2023, 14, 7210.

[202]

Wang, Y. X.; Cui, X. Z.; Zhang, J. Q.; Qiao, J. L.; Huang, H. T.; Shi, J. L.; Wang, G. X. Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Prog. Mater. Sci. 2022, 128, 100964.

[203]

Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.

[204]

Sun, X.; Qiu, Y.; Jiang, B.; Chen, Z. Y.; Zhao, C. H.; Zhou, H.; Yang, L.; Fan, L. S.; Zhang, Y.; Zhang, N. Q. Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. Nat. Commun. 2023, 14, 291.

[205]

Ding, Y. F.; Yan, T. R.; Wu, J. H.; Tian, M.; Lu, M. Y.; Xu, C. L.; Gu, J. X.; Zhao, H. R.; Wang, Y. F.; Pan, X. Q. et al. Imparting selective polysulfide conversion via geminal-atom moieties in lithium-sulfur batteries. Appl. Catal. B: Environ. 2024, 343, 123553.

[206]

Ding, Y. F.; Sun, Z. T.; Wu, J. H.; Yan, T. R.; Shen, L.; Shi, Z. X.; Wu, Y. H.; Pan, X. Q.; Zhang, L.; Zhang, Q. et al. Tuning dual-atom mediator toward high-rate bidirectional polysulfide conversion in Li-S batteries. J. Energy Chem. 2023, 87, 462–472.

[207]

Kang, X. Y.; He, T. Q.; Zou, R.; Niu, S. T.; Ma, Y. X.; Zhu, F. L.; Ran, F. Size effect for inhibiting polysulfides shuttle in lithium-sulfur batteries. Small 2024, 20, 2306503.

[208]

Wang, J.; Zhang, J.; Duan, S. R.; Jia, L. J.; Xiao, Q. B.; Liu, H. T.; Hu, H. M.; Cheng, S.; Zhang, Z. Y.; Li, L. G. et al. Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode. Nano Lett. 2022, 22, 8008–8017.

[209]

Zhou, S. Y.; Shi, J.; Liu, S. G.; Li, G.; Pei, F.; Chen, Y. H.; Deng, J. X.; Zheng, Q. Z.; Li, J. Y.; Zhao, C. et al. Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 2023, 621, 75–81.

Nano Research
Pages 8045-8067
Cite this article:
Huang Z, Wang Z, Zhou L, et al. Research progress in performance improvement strategies and sulfur conversion mechanisms of Li-S batteries based on Fe series nanomaterials. Nano Research, 2024, 17(9): 8045-8067. https://doi.org/10.1007/s12274-024-6789-9
Topics:

339

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 April 2024
Revised: 08 May 2024
Accepted: 25 May 2024
Published: 01 July 2024
© Tsinghua University Press 2024
Return