AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabricating bio-inspired high impact resistance carbon nanotube network films for multi-protection under an extreme environment

Mingquan Zhu1,2,§Kailu Xiao3,§Wei Zhang2,4,§Xudong Lei2,4Yunxiang Bai1,2( )Shijun Wang1,2Peng Zhang1,2Feng Gao1,2Congying Wang1,2Wenqiang Xu1,2Huiyong Li1,2Xianqian Wu2,4Chao Wang5Hui Zhang1,2Luqi Liu1,2Zhong Zhang1,2,6( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Department of Materials Science and Engineering, Texas A & M University, College Station, Texas 77840, USA
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
School of Astronautics, Harbin Institute of Technology, Harbin150001, China
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

§ Mingquan Zhu, Kailu Xiao, and Wei Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

We fabricated bioinspired carbon nanotube network films (PAMAM@C-CNTF) with excellent impact resistance, which have a hierarchical toughen mechanism. Additional functions including intelligent heating/anti-icing, ultraviolet protection, as well as electromagnetic interference shielding properties make these network films have great potential in practical multi-protection applications, especially under an extreme environment.

Abstract

The fabrication of light-weight, highly impact-resistant, and energy-absorbent materials is urgently demanded in many facets of the society from body armor to aerospace engineering, especially under an extreme environment. Carbon nanotubes (CNTs), one of the strongest and toughest materials ever found, also have good conductivity, chemical stability, and thermal stability, etc, making them a competitive candidate as building blocks to help achieve the above goal. In this work, a kind of CNT network was prepared by using chlorosulfonic acid (CSA) to release the internal stress of super-aligned carbon nanotube films (SA-CNTF) and dendritic polyamide amine (PAMAM) to further introduce multiple hydrogen bonds and interlocking structures. The fabricated bioinspired carbon nanotube network films (PAMAM@C-CNTF) have a high toughness of 45.97 MJ/m3, showing an increase of 420% compared to neat SA-CNTF. More importantly, the anti-impact performance of the films (e.g., with a maximum specific energy absorption of 1.40 MJ/kg under 80–100 m/s projectile impact) is superior to that of conventional protective materials from steel and Kevlar fiber, and also exceeds that of any other reported carbon-based materials. The hierarchical energy dissipation mechanism was further revealed through experiment and simulation. Additional functions including intelligent heating/anti-icing, ultraviolet protection, as well as electromagnetic interference shielding properties make these network films have great potential in practical multi-protection applications, especially under an extreme environment.

Electronic Supplementary Material

Download File(s)
6790_ESM.pdf (1.4 MB)

References

[1]
National Research Council. Opportunities in Protection Materials Science and Technology for Future Army Applications; National Academies Press: Washington, 2011.
[2]

Lee, J. H.; Loya, P. E.; Lou, J.; Thomas, E. L. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 2014, 346, 1092–1096.

[3]

Ni, J. H.; Lin, S. T.; Qin, Z.; Veysset, D.; Liu, X. Y.; Sun, Y. C.; Hsieh, A. J.; Radovitzky, R.; Nelson, K. A.; Zhao, X. H. Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly. Matter 2021, 4, 1919–1934.

[4]

Wang, W. H.; Wang, S.; Zhou, J. Y.; Deng, H. X.; Sun, S. S.; Xue, T.; Ma, Y. Q.; Gong, X. L. Bio-inspired semi-active safeguarding design with enhanced impact resistance via shape memory effect. Adv. Funct. Mater. 2023, 33, 2212093.

[5]

Huang, W.; Shishehbor, M.; Guarín-Zapata, N.; Kirchhofer, N. D.; Li, J.; Cruz, L.; Wang, T. F.; Bhowmick, S.; Stauffer, D.; Manimunda, P. et al. A natural impact-resistant bicontinuous composite nanoparticle coating. Nat. Mater. 2020, 19, 1236–1243.

[6]

Portela, C. M.; Edwards, B. W.; Veysset, D.; Sun, Y. C.; Nelson, K. A.; Kochmann, D. M.; Greer, J. R. Supersonic impact resilience of nanoarchitected carbon. Nat. Mater. 2021, 20, 1491–1497.

[7]

Xiao, K. L.; Jin, W. Y.; Liu, H. B.; Huang, C. G.; Li, Y. L.; Wu, X. Q. Low-density multilayer graphdiyne film with excellent energy dissipation capability under micro-ballistic impact. Adv. Funct. Mater. 2023, 33, 2212361.

[8]

Liang, X. Y.; Chen, G. D.; Lei, I. M.; Zhang, P.; Wang, Z. Y.; Chen, X. M.; Lu, M. Z.; Zhang, J. J.; Wang, Z. B.; Sun, T. L. et al. Impact-resistant hydrogels by harnessing 2D hierarchical structures. Adv. Mater. 2023, 35, 2207587.

[9]

Liu, K.; Cheng, L.; Zhang, N. B.; Pan, H.; Fan, X. W.; Li, G. F.; Zhang, Z. M.; Zhao, D.; Zhao, J.; Yang, X. et al. Biomimetic impact protective supramolecular polymeric materials enabled by quadruple H-bonding. J. Am. Chem. Soc. 2021, 143, 1162–1170.

[10]

Luo, J. J.; Wen, Y. Y.; Jia, X. Z.; Lei, X. D.; Gao, Z. F.; Jian, M. Q.; Xiao, Z. H.; Li, L. Y.; Zhang, J. W.; Li, T. et al. Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat. Commun. 2023, 14, 3019.

[11]

Li, Y. Q.; Fan, H. L.; Gao, X. L. Ballistic helmets: Recent advances in materials, protection mechanisms, performance, and head injury mitigation. Compos. Part B: Eng. 2022, 238, 109890.

[12]

Hu, Y. S.; Wei, Y.; Han, G.; Zhang, J. H.; Sun, G. Y.; Hu, X. Z.; Cheng, F. Comparison of impact resistance of carbon fibre composites with multiple ultra-thin CNT, aramid pulp, PBO and graphene interlayers. Compos. Part A: Appl. Sci. Manuf. 2022, 155, 106815.

[13]

Chen, L.; Cao, M. J.; Fang, Q. Ballistic performance of ultra-high molecular weight polyethylene laminate with different thickness. Int. J. Impact Eng. 2021, 156, 103931.

[14]
Chen, X. Advanced Fibrous Composite Materials for Ballistic Protection; Woodhead Publishing: Cambridge, 2016.
[15]

Bai, Y. X.; Yue, H. J.; Zhang, R. F.; Qian, W. Z.; Zhang, Z.; Wei, F. Mechanical behavior of single and bundled defect-free carbon nanotubes. Acc. Mater. Res. 2021, 2, 998–1009.

[16]

Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.

[17]

Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

[18]

Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

[19]

Wang, S. J.; Gao, E. L.; Xu, Z. P. Interfacial failure boosts mechanical energy dissipation in carbon nanotube films under ballistic impact. Carbon 2019, 146, 139–146.

[20]

Zhu, M. Q.; Bai, Y. X.; Gao, R. Y.; Liu, Y. J.; Zhang, P.; Zhang, H.; Liu, L. Q.; Zhang, Z. Failure-analysis of carbon nanotubes and their extreme applications. Nano Res. 2023, 16, 12364–12383.

[21]

Xie, W. T.; Zhang, R. Y.; Headrick, R. J.; Taylor, L. W.; Kooi, S.; Pasquali, M.; Müftü, S.; Lee, J. H. Dynamic strengthening of carbon nanotube fibers under extreme mechanical impulses. Nano Lett. 2019, 19, 3519–3526.

[22]

Hyon, J.; Lawal, O.; Thevamaran, R.; Song, Y. E.; Thomas, E. L. Extreme energy dissipation via material evolution in carbon nanotube mats. Adv. Sci. 2021, 8, 2003142.

[23]

Cai, J. Z.; Griesbach, C.; Thevamaran, R. Extreme dynamic performance of nanofiber mats under supersonic impacts mediated by interfacial hydrogen bonds. ACS Nano 2021, 15, 19945–19955.

[24]

Xiao, K. L.; Zhang, P. F.; Hu, D. M.; Huang, C. G.; Wu, X. Q. Micron-thick interlocked carbon nanotube films with excellent impact resistance via micro-ballistic impact. Small 2023, 19, 2302403.

[25]

Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779.

[26]

Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

[27]

Meyers, M. A.; Chen, P. Y.; Lin, A. Y. M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206.

[28]

Yin, Z.; Hannard, F.; Barthelat, F. Impact-resistant nacre-like transparent materials. Science 2019, 364, 1260–1263.

[29]

Yang, F.; Xie, W. H.; Meng, S. H. Analysis and simulation of fracture behavior in naturally occurring Bouligand structures. Acta Biomater. 2021, 135, 473–482.

[30]

Quan, H. C.; Yang, W.; Schaible, E.; Ritchie, R. O.; Meyers, M. A. Novel defense mechanisms in the armor of the scales of the “living fossil” coelacanth fish. Adv. Funct. Mater. 2018, 28, 1804237.

[31]

Behera, R. P.; Le Ferrand, H. Impact-resistant materials inspired by the mantis shrimp‘s dactyl club. Matter 2021, 4, 2831–2849.

[32]

Zimmermann, E. A.; Gludovatz, B.; Schaible, E.; Dave, N. K. N.; Yang, W.; Meyers, M. A.; Ritchie, R. O. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 2013, 4, 2634.

[33]

Chen, S. M.; Gao, H. L.; Zhu, Y. B.; Yao, H. B.; Mao, L. B.; Song, Q. Y.; Xia, J.; Pan, Z.; He, Z.; Wu, H. A. et al. Biomimetic twisted plywood structural materials. Natl. Sci. Rev. 2018, 5, 703–714.

[34]

Zhou, J. Y.; Wang, S.; Zhang, J. S.; Wang, Y.; Deng, H. X.; Sun, S. S.; Liu, S.; Wang, W. H.; Wu, J. P.; Gong, X. L. Enhancing bioinspired aramid nanofiber networks by interfacial hydrogen bonds for multiprotection under an extreme environment. ACS Nano 2023, 17, 3620–3631.

[35]

Xing, Y.; Yang, J. L. Stiffness distribution in natural insect cuticle reveals an impact resistance strategy. J. Biomech. 2020, 109, 109952.

[36]

Asgari, M.; Alderete, N. A.; Lin, Z. W.; Benavides, R.; Espinosa, H. D. A matter of size? Material, structural and mechanical strategies for size adaptation in the elytra of Cetoniinae beetles. Acta Biomater. 2021, 122, 236–248.

[37]

Rivera, J.; Murata, S.; Hosseini, M. S.; Trikanad, A. A.; James, R.; Pickle, A.; Yaraghi, N.; Matsumoto, N.; Yang, W.; Parkinson, D. Y. et al. Structural design variations in beetle elytra. Adv. Funct. Mater. 2021, 31, 2106468.

[38]

Fernandez, J. G.; Ingber, D. E. Chitosan-fibroin laminates: Unexpected strength and toughness in chitosan-fibroin laminates inspired by insect cuticle. Adv. Mater. 2012, 24, 446

[39]

Rivera, J.; Hosseini, M. S.; Restrepo, D.; Murata, S.; Vasile, D.; Parkinson, D. Y.; Barnard, H. S.; Arakaki, A.; Zavattieri, P.; Kisailus, D. Toughening mechanisms of the elytra of the diabolical ironclad beetle. Nature 2020, 586, 543–548.

[40]

Chen, C. C.; Li, D. G.; Yano, H.; Abe, K. Insect cuticle-mimetic hydrogels with high mechanical properties achieved via the combination of chitin nanofiber and gelatin. J. Agric. Food Chem. 2019, 67, 5571–5578.

[41]

Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012.

[42]

Cranford, S.; Yao, H. M.; Ortiz, C.; Buehler, M. J. A single degree of freedom ‘lollipop’ model for carbon nanotube bundle formation. J. Mech. Phys. Solids 2010, 58, 409–427.

[43]

Buehler, M. J. Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture. J. Mater. Res. 2006, 21, 2855–2869.

[44]

Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

[45]

Lee, J.; Lee, D. M.; Kim, Y. K.; Jeong, H. S.; Kim, S. M. Significantly increased solubility of carbon nanotubes in superacid by oxidation and their assembly into high-performance fibers. Small 2017, 13, 1701131.

[46]

Headrick, R. J.; Tsentalovich, D. E.; Berdegué, J.; Bengio, E. A.; Liberman, L.; Kleinerman, O.; Lucas, M. S.; Talmon, Y.; Pasquali, M. Structure–property relations in carbon nanotube fibers by downscaling solution processing. Adv. Mater. 2018, 30, 1704482.

[47]

Wu, K. J.; Wang, B.; Niu, Y. T.; Wang, W. J.; Wu, C.; Zhou, T.; Chen, L.; Zhan, X. H.; Wan, Z. Y.; Wang, S. et al. Carbon nanotube fibers with excellent mechanical and electrical properties by structural realigning and densification. Nano Res. 2023, 16, 12762–12771.

[48]

Kesharwani, P.; Banerjee, S.; Gupta, U.; Mohd Amin, M. C. I.; Padhye, S.; Sarkar, F. H.; Iyer, A. K. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater. Today 2015, 18, 565–572.

[49]

Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553.

[50]

Lee, H.; Cho, H.; Lee, S. H.; Lee, D. M.; Oh, E.; Lee, J.; Lee, K. H. Estimating carbon nanotube length from isotropic cloud point of carbon nanotube/chlorosulfonic acid solutions. Carbon 2021, 182, 185–193.

[51]

Rao, A. M.; Jorio, A.; Pimenta, M. A.; Dantas, M. S. S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1820–1823.

[52]

Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.

[53]

Dean, J.; Dunleavy, C. S.; Brown, P. M.; Clyne, T. W. Energy absorption during projectile perforation of thin steel plates and the kinetic energy of ejected fragments. Int. J. Impact Eng. 2009, 36, 1250–1258.

[54]

Tao, X. Y.; Liu, J.; Koley, G.; Li, X. D. B/SiO x nanonecklace reinforced nanocomposites by unique mechanical interlocking mechanism. Adv. Mater. 2008, 20, 4091–4096.

[55]

Li, L. H.; Hong, S. K.; Jo, Y.; Tian, M. D.; Woo, C. Y.; Kim, S. H.; Kim, J. M.; Lee, H. W. Transparent, flexible heater based on hybrid 2D platform of graphene and dry-spun carbon nanotubes. ACS Appl. Mater. Interfaces 2019, 11, 16223–16232.

[56]

Liu, P.; Liu, L.; Wei, Y.; Liu, K.; Chen, Z.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Fast high-temperature response of carbon nanotube film and its application as an incandescent display. Adv. Mater. 2009, 21, 3563–3566.

[57]

Li, B.; Yang, Y. F.; Wu, N.; Zhao, S. Y.; Jin, H.; Wang, G. L.; Li, X. Y.; Liu, W.; Liu, J. R.; Zeng, Z. H. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 2022, 16, 19293–19304.

[58]

Yoon, Y. H.; Song, J. W.; Kim, D.; Kim, J.; Park, J. K.; Oh, S. K.; Han, C. S. Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 2007, 19, 4284–4287.

[59]

Meng, X.; Zhang, J. Y.; Ma, J.; Li, Y.; Chen, Z. X.; Liu, S. Y.; Chen, T. X.; Zhang, Y. P.; Jiang, X. L.; Zhu, S. M. Using cellulose nanocrystals for graphene/hexagonal boron nitride nanosheet films towards efficient thermal management with tunable electrical conductivity. Compos. Part A: Appl. Sci. Manuf. 2020, 138, 106089.

[60]

Shen, C.; Li, H. Y.; Sun, S.; Zhang, H.; Yan, L. Q.; Zhang, Z. Design and optical performance investigation of all-sprayable ultrablack coating. Nano Res. 2023, 16, 12901–12909.

[61]

Zeng, Z. H.; Jiang, F. Z.; Yue, Y.; Han, D. X.; Lin, L. C.; Zhao, S. Y.; Zhao, Y. B.; Pan, Z. Y.; Li, C. J.; Nyström, G. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 2020, 32, 1908496.

[62]

Zhang, D.; Villarreal, M. G.; Cabrera, E.; Benatar, A.; James Lee, L.; Castro, J. M. Performance study of ultrasonic assisted processing of CNT nanopaper/solventless epoxy composite. Compos. Part B: Eng. 2019, 159, 327–335.

[63]

Crespo, M.; González, M.; Elías, A. L.; Pulickal Rajukumar, L.; Baselga, J.; Terrones, M.; Pozuelo, J. Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi Rapid Res. Lett. 2014, 8, 698–704.

[64]

Yang, Y. L.; Gupta, M. C.; Dudley, K. L.; Lawrence, R. W. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 2005, 5, 2131–2134.

[65]

Shen, B.; Li, Y.; Zhai, W. T.; Zheng, W. G. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057.

[66]

Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

Nano Research
Pages 7793-7802
Cite this article:
Zhu M, Xiao K, Zhang W, et al. Fabricating bio-inspired high impact resistance carbon nanotube network films for multi-protection under an extreme environment. Nano Research, 2024, 17(9): 7793-7802. https://doi.org/10.1007/s12274-024-6790-3
Topics:

360

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 March 2024
Revised: 16 May 2024
Accepted: 28 May 2024
Published: 02 July 2024
© Tsinghua University Press 2024
Return