AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergy enhancement of Co single atoms and asymmetric sub-nanoclusters for Fenton-like activation

Ming Ma1Zhiyi Sun2Ziwei Deng2Xiang Li1( )Fang Zhang3Wenxing Chen2( )
School of Materials, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technologies Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Analysis and Testing Center, Beijing Institute of Technology, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

As a new water treatment technology, Fenton-like reaction has great potential. In this study, we successfully prepared an excellent Fenton-like catalyst, which is composed of cobalt monoatoms and asymmetric subnanoclusters (labeled CoSA/Clu-C2N), and exhibits excellent peroxymonosulfate (PMS) activation reactivity. By directly comparing the catalytic properties of CoSA-C2N and CoSA/Clu-C2N, the synergistic effects of coasymmetric Co subclusters and Co atoms on the activation of PMS and degradation of organic micropollutants were investigated. The results showed that CoSA/Clu-C2N had higher degradation rates of carbamazepine (CBZ), antipyrine (AT) and chlorobenzoic acid (CA) when combined with active oxidant PMS. The cyclic frequency of CBZ was 5.4 min−1, which was twice as high as the catalytic constant of CoSA-C2N (2.4 min−1). The results show that CoSA/Cul-C2N cobalt subnanoclusters and cobalt single atom can synergistically improve the catalytic performance of activated PMS oxidation of micropollutants in water. In addition, electron paramagnetic resonance (EPR) technology has proved that the introduction of Co subnano clusters in CoSA/Cu-C2N is conducive to the production of 1O2, thereby improving the efficiency of pollutant oxidation. This work lays a solid foundation for the future design of advanced multifunctional catalysts by carefully regulating and combining monmetallic atoms and metal subnanoclusters.

Abstract

As a new water treatment technology, Fenton-like reaction has great potential. In this study, we successfully prepared an excellent Fenton-like catalyst, which is composed of cobalt monoatoms and asymmetric subnanoclusters (labeled CoSA/Clu-C2N), and exhibits excellent peroxymonosulfate (PMS) activation reactivity. By directly comparing the catalytic properties of CoSA-C2N and CoSA/Clu-C2N, the synergistic effects of coasymmetric Co subclusters and Co atoms on the activation of PMS and degradation of organic micropollutants were investigated. The results showed that CoSA/Clu-C2N had higher degradation rates of carbamazepine (CBZ), antipyrine (AT) and chlorobenzoic acid (CA) when combined with active oxidant PMS. The cyclic frequency of CBZ was 5.4 min−1, which was twice as high as the catalytic constant of CoSA-C2N (2.4 min−1). The results show that CoSA/Clu-C2N cobalt subnanoclusters and cobalt single atom can synergistically improve the catalytic performance of activated PMS oxidation of micropollutants in water. In addition, electron paramagnetic resonance (EPR) technology has proved that the introduction of Co subnano clusters in CoSA/Clu-C2N is conducive to the production of singlet oxygen (1O2), thereby improving the efficiency of pollutant oxidation. This work lays a solid foundation for the future design of advanced multifunctional catalysts by carefully regulating and combining monmetallic atoms and metal subnanoclusters.

Electronic Supplementary Material

Download File(s)
6792_ESM.pdf (3 MB)

References

[1]

Wang, J. L.; Xu, L. J. Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325.

[2]

Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650.

[3]

Cai, A. H.; Ling, X.; Wang, L.; Sun, Q.; Zhou, S. Q.; Chu, W. H.; Li, X. Y.; Deng, J. Insight into UV-LED/PS/Fe(III) and UV-LED/PMS/Fe(III) for p-arsanilic acid degradation and simultaneous arsenate immobilization. Water Res. 2022, 223, 118989.

[4]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[5]

Sun, J. Q.; Liu, L. F.; Yang, F. L. A visible-light-driven photocatalytic fuel cell/peroxymonosulfate (PFC/PMS) system using blue TiO2 nanotube arrays (TNA) anode and Cu-Co-WO3 cathode for enhanced oxidation of organic pollutant and ammonium nitrogen in real seawater. Appl. Catal. B: Environ. 2022, 308, 121215.

[6]

Hu, P. D.; Long, M. C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B: Environ. 2016, 181, 103–117.

[7]

Zong, Y.; Guan, X. H.; Xu, J.; Feng, Y.; Mao, Y. F.; Xu, L. Q.; Chu, H. Q.; Wu, D. L. Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the cobalt(II)-activated peroxymonosulfate process. Environ. Sci. Technol. 2020, 54, 16231–16239.

[8]

Zhou, H. Y.; Peng, J. L.; Duan, X. G.; Yin, H. X.; Huang, B. K.; Zhou, C. Y.; Zhong, S.; Zhang, H.; Zhou, P.; Xiong, Z. K. et al. Redox-active polymers as robust electron-shuttle Co-catalysts for fast Fe3+/Fe2+ circulation and green Fenton oxidation. Environ. Sci. Technol. 2023, 57, 3334–3344.

[9]

Huang, M. J.; Li, Y. S.; Zhang, C. Q.; Cui, C.; Huang, Q. Q.; Li, M. K.; Qiang, Z. M.; Zhou, T.; Wu, X. H.; Yu, H. Q. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration. Proc. Natl. Acad. Sci. USA 2022, 119, e2202682119.

[10]

Zhang, D. P.; Li, Y. X.; Wang, P. F.; Qu, J. Y.; Li, Y.; Zhan, S. H. Dynamic active-site induced by host–guest interactions boost the Fenton-like reaction for organic wastewater treatment. Nat. Commun. 2023, 14, 3538.

[11]

Li, J. Q.; Li, M. T.; Sun, H. Q.; Ao, Z. M.; Wang, S. B.; Liu, S. M. Understanding of the oxidation behavior of benzyl alcohol by peroxymonosulfate via carbon nanotubes activation. ACS Catal. 2020, 10, 3516–3525.

[12]

Wang, L. D.; Wang, Y. N.; Wang, Z. X.; Du, P. H.; Xing, L.; Xu, W. C.; Ni, J. C.; Liu, S.; Wang, Y. H.; Yu, G. F. et al. Proton transfer triggered in-situ construction of C=N active site to activate PMS for efficient autocatalytic degradation of low-carbon fatty amine. Water Res. 2023, 240, 120119.

[13]

Liu, X. W.; Shao, P. H.; Gao, S. S.; Bai, Z. Y.; Tian, J. Y. Benzoquinone-assisted heterogeneous activation of PMS on Fe3S4 via formation of active complexes to mediate electron transfer towards enhanced bisphenol A degradation. Water Res. 2022, 226, 119218.

[14]

Wang, A. W.; Ni, J. X.; Wang, W.; Liu, D. M.; Zhu, Q.; Xue, B. X.; Chang, C. C.; Ma, J.; Zhao, Y. MOF derived Co-Fe nitrogen doped graphite carbon@crosslinked magnetic chitosan micro-nanoreactor for environmental applications: Synergy enhancement effect of adsorption-PMS activation. Appl. Catal. B: Environ. 2022, 319, 121926.

[15]

Yao, Y. Y.; Wang, C. H.; Yan, X.; Zhang, H.; Xiao, C. M.; Qi, J. W.; Zhu, Z. G.; Zhou, Y. J.; Sun, X. Y.; Duan, X. G. et al. Rational regulation of Co–N–C coordination for high-efficiency generation of 1O2 toward nearly 100% selective degradation of organic pollutants. Environ. Sci. Technol. 2022, 56, 8833–8843.

[16]

Bao, C. S.; Wang, H.; Wang, C. Y.; Zhang, X. H.; Zhao, X. L.; Dong, C. L.; Huang, Y. C.; Chen, S.; Guo, P.; She, X. L. et al. Cooperation of oxygen vacancy and FeIII/FeII sites in H2-reduced Fe-MIL-101 for enhanced Fenton-like degradation of organic pollutants. J. Hazard. Mater. 2023, 441, 129922.

[17]

Liu, Z.; Pan, S. Y.; Xu, F.; Wang, Z. W.; Zhao, C.; Xu, X.; Gao, B. Y.; Li, Q. Revealing the fundamental role of MoO2 in promoting efficient and stable activation of persulfate by iron carbon based catalysts: Efficient Fe2+/Fe3+ cycling to generate reactive species. Water Res. 2022, 225, 119142.

[18]

Xie, L. B.; Wang, P. F.; Li, Y.; Zhang, D. P.; Shang, D. H.; Zheng, W. W.; Xia, Y. G.; Zhan, S. H.; Hu, W. P. Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N-CuO for organic pollutants degradation. Nat. Commun. 2022, 13, 5560.

[19]

Yang, M.; Wu, K. Y.; Sun, S. D.; Duan, J. L.; Liu, X.; Cui, J.; Liang, S. H.; Ren, Y. J. Unprecedented relay catalysis of curved Fe1-N4 single-atom site for remarkably efficient 1O2 generation. ACS Catal. 2023, 13, 681–691.

[20]

Wu, L. P.; Li, B.; Li, Y.; Fan, X. B.; Zhang, F. B.; Zhang, G. L.; Xia, Q.; Peng, W. C. Preferential growth of the cobalt (200) facet in Co@N-C for enhanced performance in a Fenton-like reaction. ACS Catal. 2021, 11, 5532–5543.

[21]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[22]

Saputra, E.; Muhammad, S.; Sun, H. Q.; Ang, H. M.; Tadé, M. O.; Wang, S. B. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ. Sci. Technol. 2013, 47, 5882–5887.

[23]

Li, X.N.; Ao, Z. M.; Liu, J. Y.; Sun, H. Q.; Rykov, A. I.; Wang, J. H. Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient Fenton-like catalysts. ACS Nano 2016, 10, 11532–11540.

[24]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[25]

Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1706287.

[26]

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

[27]

Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

[28]

Shang, Y. N.; Xu, X.; Gao, B. Y.; Wang, S. B.; Duan, X. G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322.

[29]

Zhou, P.; Ren, W.; Nie, G.; Li, X. J.; Duan, X. G.; Zhang, Y. L.; Wang, S. B. Fast and long-lasting iron(III) reduction by boron toward green and accelerated Fenton chemistry. Angew. Chem., Int. Ed. 2020, 59, 16517–16526.

[30]

Chu, C. H.; Yang, J.; Zhou, X. C.; Huang, D. H.; Qi, H. F.; Weon, S.; Li, J. F.; Elimelech, M.; Wang, A. Q.; Kim, J. H. Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation. Environ. Sci. Technol. 2021, 55, 1242–1250.

[31]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[32]

Qian, K.; Chen, H.; Li, W. L.; Ao, Z. M.; Wu, Y. N.; Guan, X. H. Single-atom Fe catalyst outperforms its homogeneous counterpart for activating peroxymonosulfate to achieve effective degradation of organic contaminants. Environ. Sci. Technol. 2021, 55, 7034–7043.

[33]

Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

[34]

Chen, M. T.; Wang, N.; Zhu, L. H. Single-atom dispersed Co-N-C: A novel adsorption-catalysis bifunctional material for rapid removing bisphenol A. Catal. Today 2020, 348, 187–193.

[35]

Xu, H. D.; Jiang, N.; Wang, D.; Wang, L. H.; Song, Y. F.; Chen, Z. Q.; Ma, J.; Zhang, T. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways. Appl. Catal. B: Environ. 2020, 263, 118350.

[36]

Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.

[37]

An, S. R.; Yang, J. R.; Jin, Q. Highly efficient peroxymonosulfate activation of single-atom Fe catalysts via integration with Fe ultrafine atomic clusters for the degradation of organic contaminants. Sep. Purif. Technol. 2022, 300, 121910.

[38]

Wang, W. L.; Wang, Y.; Xing, Z. H.; Yang, Z. W.; Wang, Z. W.; Wu, Q. Y.; Hübner, U. Peroxymonosulfate activation by a bimetallic catalyst with Fe nanoclusters and Co single-atoms on C3N4 (FeNCCoSA-C3N4) for oxidation of organic pollutants via radical and nonradical pathways. Chem. Eng. J. 2023, 473, 145206.

[39]

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

[40]

Xu, H. B.; Jia, H. X.; Li, H. Z.; Liu, J.; Gao, X. W.; Zhang, J. C.; Liu, M.; Sun, D. L.; Chou, S. L.; Fang, F. et al. Dual carbon-hosted Co-N3 enabling unusual reaction pathway for efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2021, 297, 120390.

[41]

Min, Y.; Zhou, X.; Chen, J. J.; Chen, W. X.; Zhou, F. Y.; Wang, Z. Y.; Yang, J.; Xiong, C.; Wang, Y.; Li, F. T. et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.

[42]

Gao, Y. W.; Zhu, Y.; Li, T.; Chen, Z. H.; Jiang, Q. K.; Zhao, Z. Y.; Liang, X. Y.; Hu, C. Unraveling the high-activity origin of single-atom iron catalysts for organic pollutant oxidation via peroxymonosulfate activation. Environ. Sci. Technol. 2021, 55, 8318–8328.

[43]

Liang, X. Y.; Wang, D.; Zhao, Z. Y.; Li, T.; Chen, Z. H.; Gao, Y. W.; Hu, C. Engineering the low-coordinated single cobalt atom to boost persulfate activation for enhanced organic pollutant oxidation. Appl. Catal. B: Environ. 2022, 303, 120877.

[44]

Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Hu, Y. F.; Amiinu, I. S.; Wang, X.; Zhou, J. G.; Xia, H. C.; Song, Z. B.; Xu, Q. et al. Carbon nanosheets containing discrete Co-N x -B y -C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 2018, 12, 1894–1901.

[45]

Liu, S. A.; Liu, D.; Sun, Y. L.; Xiao, P. Y.; Lin, H. J.; Chen, J. R.; Wu, X. L.; Duan, X. G.; Wang, S. B. Enzyme-mimicking single-atom FeN4 sites for enhanced photo-Fenton-like reactions. Appl. Catal. B: Environ. 2022, 310, 121327.

[46]

Chen, C. F.; Yan, M. J.; Li, Y.; Hu, Y. W.; Chen, J. R.; Wang, S. B.; Wu, X. L.; Duan, X. G. Single-atom co sites confined in layered double hydroxide for selective generation of surface-bound radicals via peroxymonosulfate activation. Appl. Catal. B: Environ. 2024, 340, 123218.

[47]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[48]

Wang, P.; Ren, Y. Y.; Wang, R. T.; Zhang, P.; Ding, M. J.; Li, C. X.; Zhao, D. Y.; Qian, Z.; Zhang, Z. W.; Zhang, L. Y. et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 2020, 11, 1576.

[49]

Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 2018, 9, 3861.

[50]

Yamazaki, I.; Piette, L. H. EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide. J. Am. Chem. Soc. 1991, 113, 7588–7593.

[51]

Song, W. L.; Ge, P.; Ke, Q.; Sun, Y. L.; Chen, F.; Wang, H.; Shi, Y. P.; Wu, X. L.; Lin, H. J.; Chen, J. R. et al. Insight into the mechanisms for hexavalent chromium reduction and sulfisoxazole degradation catalyzed by graphitic carbon nitride: The Yin and Yang in the photo-assisted processes. Chemosphere 2019, 221, 166–174.

[52]

Liu, Y. T.; Qiu, W. X.; Wang, P. F.; Li, R.; Liu, K.; Omer, K. M.; Jin, Z. Y.; Li, P. P. Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. Appl. Catal. B: Environ. 2024, 340, 123228.

[53]

Wu, J. W.; Gao, J.; Lian, S. S.; Li, J. P.; Sun, K. H.; Zhao, S. F.; Kim, Y. D.; Ren, Y. J.; Zhang, M.; Liu, Q. Y. et al. Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C-H activation. Appl. Catal. B: Environ. 2022, 314, 121516.

[54]

Zhang, T. F.; Zheng, P.; Gu, F. N.; Xu, W. Q.; Chen, W. X.; Zhu, T. Y.; Han, Y. F.; Xu, G. W.; Zhong, Z. Y.; Su, F. B. The dual-active-site tandem catalyst containing Ru single atoms and Ni nanoparticles boosts CO2 methanation. Appl. Catal. B: Environ. 2023, 323, 122190.

[55]

Wang, B.; Yang, Q. L.; Li, B.; Ma, H. Y.; Xuan, Y.; Gao, C.; Liang, Y. J.; Zhang, K. H.; Chang, Q. W.; Broesicke, O. et al. Heterostructure-strengthened metal-support interaction of single-atom Pd catalysts enabling efficient oxygen activation for CO and VOC oxidation. Appl. Catal. B: Environ. 2023, 332, 122753.

Nano Research
Pages 7935-7944
Cite this article:
Ma M, Sun Z, Deng Z, et al. Synergy enhancement of Co single atoms and asymmetric sub-nanoclusters for Fenton-like activation. Nano Research, 2024, 17(9): 7935-7944. https://doi.org/10.1007/s12274-024-6792-1
Topics:

281

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 April 2024
Revised: 20 May 2024
Accepted: 28 May 2024
Published: 29 June 2024
© Tsinghua University Press 2024
Return